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Abstract1

1. Tropical forests fix large quantities of carbon from the atmosphere every year; how-2

ever, the fate of this carbon as it travels through ecosystem compartments is poorly3

understood. In particular, there is a large degree of uncertainty regarding the time4

carbon spends in an ecosystem before it is respired and returns to the atmosphere5

as CO2.6

2. We quantified the fate of carbon (trajectory of photosynthetically fixed carbon7

through a network of compartments) and its transit time (time it takes carbon to8

pass through the entire ecosystem, from fixation to respiration) for an old-growth9

tropical forest.10

3. We show that on average, 50% of the carbon fixed at any given time is respired11

in less than 0.5 years, and 95% is respired in less than 69 years. The transit time12

distribution shows that carbon in ecosystems is respired on a range of timescales13

that span decades, but fast metabolic processes in vegetation dominate the return of14

carbon to the atmosphere. These fast processes are not well captured by estimates15

of the mean residence time of biomass based on data from inventory plots, or the16

ratio of gross primary production to the total carbon stock.17

4. Synthesis. The transit time distribution integrates multiple ecosystem processes18

occurring at a wide range of timescales. It reconciles measurements of respired19

CO2 with estimates of mean residence time in woody biomass, and provides a new20

approach to interpret other ecosystem level metrics such as the ratio of net primary21

production to gross primary production. The fate and transit time of carbon in22

ecosystems also offer new insights on whether CO2 fertilization of tropical forests23

have consequences on timescales relevant for climate change mitigation.24

Keywords: carbon use efficiency, ecosystem respiration, global carbon cycle, model-25

data assimilation, transit times, tropical forests.26
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1 Introduction27

The terrestrial biosphere photosynthesizes annually about 120 ± 7 PgC yr−1, a flux that28

is largely driven by productivity in the tropics (Beer et al., 2010; Jung et al., 2020)29

where gross primary production (GPP) is often larger than 30 MgC ha−1 yr−1 (Fu et al.,30

2018). Most of this photosynthetically fixed carbon is assumed to return quickly to31

the atmosphere, with ecosystem respiration (Re) being often as large as the GPP flux32

(Chambers et al., 2004; Fu et al., 2018; Luyssaert et al., 2007). It is likely that between 5033

to 70% of the GPP flux in tropical ecosystems is lost as autotrophic respiration (Waring34

et al., 1998; Gifford, 2003; DeLucia et al., 2007; Chambers et al., 2004); however, it is35

uncertain if the respiratory flux is composed mostly of recent photosynthates or of carbon36

that spends years to decades stored in the ecosystem.37

The time that carbon fixed as GPP spends in an ecosystem is of relevance to under-38

stand feedbacks between ecosystems and the climate system. During the time carbon39

is stored in ecosystems as organic compounds, it is removed from radiative effects in40

the atmosphere (Noble et al., 2000; Neubauer and Megonigal, 2015; Sierra et al., 2020).41

Therefore, whether respired carbon from ecosystem is young or old, gives an idea of the42

time photosynthetically fixed carbon remains stored. This lapse of time when carbon is43

removed from the atmosphere is particularly relevant for tropical ecosystems given their44

dominance in the global GPP flux.45

Studies with tropical trees have shown that healthy mature trees respire mostly recent46

carbon assimilates (< 2 years-old carbon), but can respire decades-old carbon under47

stress (Vargas et al., 2009; Muhr et al., 2013, 2018). In fact, observational studies with48

temperate trees as well as modeling studies have shown that trees can respire carbon of49

a wide range of ages, from days- to decades-old carbon (Carbone et al., 2013; Trumbore50

et al., 2015; Ceballos-Núñez et al., 2018; Herrera-Ramı́rez et al., 2020). Therefore, one51

would expect that respiration in tropical ecosystems is composed by a mixture of carbon52

of different ages (Trumbore, 2006; Trumbore and Barbosa De Camargo, 2013), but such53

a mixture is difficult to quantify. Isotopic labelling experiments in temperate ecosystems54

have shown that respired carbon is mostly young, but with a high degree of mixing55
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difficult to characterize from the isotopic data alone (Keel et al., 2006; Hopkins et al.,56

2012).57

In contrast to isotopic labelling studies, data from permanent plots across the tropics58

suggest that carbon stays in woody biomass, on average, by about 50 years or more59

(Galbraith et al., 2013; Malhi et al., 2013). Plot-level estimates of the time carbon stays60

in the woody biomass of tropical forests are commonly obtained by dividing wood biomass61

carbon stocks over stem growth. This approach relies on three main assumptions: 1) the62

forests are in a dynamic equilibrium in which inputs of carbon are balanced by losses63

from mortality and respiration, 2) the obtained mean value characterizes an unknown64

underlying distribution of the time carbon spends in an ecosystem, and 3) the woody65

biomass pool is representative of the dynamics of the entire ecosystem, so dynamics66

in detritus and soil carbon pools can be ignored. Assumption 1 is reasonable for old-67

growth tropical forests because it is expected that over the long-term, climate variability,68

disturbances, and internal forest dynamics would balance the net carbon flux around a69

mean value of zero, but with important variability in fluxes from year to year (Sierra70

et al., 2009; Chambers et al., 2013). A deeper exploration of assumptions 2 and 3 may71

help to explain the large difference between tree- and plot-level estimates of the time72

carbon spends in tropical ecosystems.73

The fate of carbon through an ecosystem and the time it spends there, from pho-74

tosynthesis until respiration, is well captured by the concept of transit time (Bolin and75

Rodhe, 1973; Rasmussen et al., 2016; Sierra et al., 2017). This concept quantifies the76

time it takes carbon atoms to travel through the entire ecosystem and links three main77

ecosystem processes: photosynthesis, storage, and respiration. It can be expressed as78

a probability mass function that quantifies the time it takes to respire a proportion of79

carbon fixed at a given time. Under the assumption of equilibrium, the total carbon80

stock divided by the total input or output flux provides an estimate of the mean of the81

transit time distribution. Therefore, estimates of the entire transit time distribution of82

carbon in tropical forests would help us to better understand not only the mean time83

carbon spends in the woody-biomass, but also the time recent photosynthates spend in84
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trees before being respired, and the time it takes for carbon that enters the soil to appear85

in the respiratory flux. This transit time distribution should capture all these different86

processes over a wide range of timescales.87

In this manuscript, we provide an estimate of the transit time distribution of carbon in88

a tropical forest ecosystem using a data assimilation technique to parameterize a dynamic89

ecosystem model. Our main hypothesis is that the shape of the transit time distribution90

reconciles estimates of the time carbon spends in ecosystems obtained from tree- and plot-91

level methods. Furthermore, we attempt to provide here the formal theory to not only92

obtain the transit time distribution, but also metrics to characterize the fate of carbon93

inputs through the entire ecosystem as well as the age of carbon in ecosystem pools. This94

theory is then used to present an alternative interpretation of the link between GPP,95

autotrophic respiration (Ra), and net primary production (NPP).96

2 Theory97

The time that carbon spends in ecosystems can be obtained using the concept of transit98

time (Bolin and Rodhe, 1973; Thompson and Randerson, 1999; Rasmussen et al., 2016;99

Sierra et al., 2017). It characterizes the time carbon atoms spend in an ecosystem, from100

the time of carbon fixation by photosynthesis until release to the atmosphere through101

respiration in the absence of fire.102

To compute transit times, we will consider a special case of the general mathematical103

representation of ecosystem carbon dynamics that follows the compartmental system104

representation proposed in Sierra et al. (2018). Since we are concerned in this manuscript105

with tropical old-growth forests at equilibrium, we will represent carbon dynamics in106

multiple pools using a linear autonomous compartmental system of the form107

dx

dt
= ẋ(t) = u + B · x(t), (1)

where the vector u represents total carbon inputs from the atmosphere to ecosystem108

pools, and the matrix B represents all cycling and transfer rates of carbon within the109
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ecosystem. These linear autonomous compartmental systems at equilibrium have steady-110

state carbon stocks equivalent to111

x∗ = −B−1 · u. (2)

At this equilibrium point, where inputs from photosynthesis are balanced by losses from112

ecosystem respiration, it is possible to compute the fate of carbon inputs entering at an113

arbitrary time t0 using the matrix exponential of the compartmental matrix (Sierra et al.,114

2020). Explicitly, the mass of carbon remaining in the ecosystem after photosynthetic115

fixation can be obtained as116

M (t) = e(t−t0)B · u, (3)

where e(t−t0)B is the matrix exponential. In other words, photosynthetic inputs are lost117

from the ecosystem according to an exponential term that takes into account possible118

transfers of matter among compartments.119

Carbon that is lost from each pool and that is not transferred to other pools is lost120

from the system as respiration. Therefore, the rate of respiratory losses can be obtained121

as the sum of all column elements of the compartmental matrix as122

zᵀ = −1ᵀ ·B, (4)

where ᵀ is the transpose operator and −1ᵀ is a row vector containing 1 (i.e., by this123

multiplication the column sum of B is obtained). Therefore, zᵀ is a row vector of rates of124

carbon loss from each pool. Total respiratory losses are thus proportional to the amount125

of carbon stored at any time t. If we focus on the fate of inputs entering at t0, we can126

thus obtain the amount of respiratory losses as127

R(t) = zᵀ ·M (t)

= −1ᵀ ·B · e(t−t0)B · u
(5)

This function represent how carbon that enters at a particular time t0 is lost from the128
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system. This equation is virtually similar to the transit time distribution function derived129

by Metzler and Sierra (2018) and expressed as130

fT (τ) = −1ᵀ ·B · eτB · u

‖u‖
, (6)

Assuming that τ = t − t0, we can see that equations (5) and (6) are identical, with the131

only difference that fT (τ) is a density function that integrates to the value of one, while132

R(t) is a mass function that integrates to the total input mass ‖u‖. The symbol ‖ ‖133

represents the sum of all elements inside the vector.134

We can see now that the transit time distribution can be interpreted as the time it135

takes for carbon entering the ecosystem as GPP to appear in the respiratory flux.136

Rasmussen et al. (2016) have previously shown that the mean transit time is composed137

by the contribution to respiration of ecosystem carbon pools with specific mean ages. It138

is therefore of interest to compute the age distribution for each individual pool and for139

the entire ecosystem. According to Metzler and Sierra (2018), the vector of density140

distributions of age for individual pools can be obtained as141

fa(τ) = (X∗)−1 · eτ B · u (7)

where X∗ = diag (x∗1, x
∗
2, . . . , x

∗
n) is the diagonal matrix with the steady-state vector of142

carbon stocks as components. The age distribution function for the entire system is given143

by144

fA(τ) = −1ᵀ ·B · eτB · x∗

‖x∗‖
. (8)

These age distributions can help us to better understand how carbon of different ages145

contributes to the total respiratory flux in an ecosystem.146

3 Methods147

To obtain the transit time distribution of carbon for an old-growth tropical forest ecosys-148

tem, we implemented a model-data assimilation procedure that integrates a compartmen-149
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tal dynamical model with carbon stock and flux data from a tropical region in Colombia.150

We used carbon stock data collected at the Porce region of Colombia (6◦ 45’ 37 N, 75◦
151

06’ 28” W, 800–1000 m elevation above sea level, 2078 mm mean annual precipitation,152

21.3 ◦C mean annual temperature), where intensive studies have been conducted to ob-153

tain carbon accumulation over time along a sequence of secondary forests recovering from154

grazing and agricultural land use (Sierra et al., 2007a; Yepes et al., 2010; del Valle et al.,155

2011; Sierra et al., 2012). The landscape also contains elements of old-growth forests156

with no evidence of previous disturbance. Together, these observations were used in a157

data assimilation procedure to fit a linear compartmental system of the form of equation158

(1), using as carbon inputs satellite-derived estimes of GPP for the region as reported159

in Tramontana et al. (2016) and Ryu et al. (2011) (updated in Jiang and Ryu, 2016).160

In particular, we used the average ± standard deviation of GPP for the period between161

2001 and 2015 from Jiang and Ryu (2016) at 1 km and 8 day resolution, which gives a162

value of 22.89 ± 2.46 MgC ha−1 yr−1. Average GPP for the same period at 10 km and163

8 day resolution from Tramontana et al. (2016) gives a value of 24.4 ± 1.02 MgC ha−1
164

yr−1. A combined estimate of GPP for the region with uncertainty propagation gives a165

value of 23.98 ± 2.36 MgC ha−1 yr−1 (see code in supplementary material).166

The model has seven pools, x1: foliage, x2: wood, x3: fine roots, x4: coarse roots, x5:167

fine litter, x6: coarse woody debris, and x7: soil carbon from 0 to 30 cm depth (Figure168

1). In the model, all carbon fixed as GPP enters through the foliage compartment; i.e.169

u1 = GPP, and from there carbon is transferred to the x2, x3, and x4 pools according to170

transfer coefficients αi,j that represent the proportional transfers of material from pool j171

to pool i. We make the implicit assumption that photosynthetically fixed carbon stored172

as non-structural carbohydrates in the foliage can be mobilized and allocated to wood,173

fine and coarse roots. Transfers from the vegetation pools to the litter and soil pools were174

also represented using transfer coefficients αi,j. In particular, the dynamic model has the175

form176
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Foliage

Coarse roots

Soil Carbon

GPP

Fine litterCoarse woody
      debris 

 Fine roots 

Atmosphere

Wood

Figure 1: Structure of the compartmental model used to fit the available data from the
Porce region of Colombia. Arrows represent transfers of carbon among pools (continuous
line) or respiratory losses (dashed lines) to the atmosphere. Autotrophic respiration fluxes
in dark blue and heterotrophic respiration fluxes in dark red.
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ẋ1

ẋ2
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, (9)

where the cycling rates for each pool i are denoted as ki, and the transfer coefficients177

from a pool j to a pool i are denoted as αi,j.178

Measurements of aboveground tree biomass and palm biomass reported in Sierra et al.179
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(2012) were aggregated and transformed to foliage biomass using a fraction of foliage of180

0.08 as reported in Zapata and del Valle (2001). Measurements of biomass of herbaceous181

vegetation were added to this foliage biomass pool. To obtain values for the wood biomass182

pool, we used the aggregated values of tree and palm aboveground biomass multiplied by183

a fraction of wood biomass of 0.92, based on measurements reported by Zapata and del184

Valle (2001).185

The data-assimilation procedure used random variates of GPP and carbon stocks in186

old-growth forests sampled from a normal distribution of mean values with their corre-187

sponding standard deviation. We used 1000 random variates for GPP and 33 random188

variates (equivalent to the original sample size) for the old-growth carbon stocks, which189

were used to find 1000 sets of parameter values for the model using the Levenberg-190

Marquardt optimization algorithm (Soetaert and Petzoldt, 2010).191

Using the average of the entire set of parameter values, we computed representative192

distributions of age and transit time using equations (7), (8), and (6). All computations193

were performed in R version 4.0, and code to reproduce all results is available as supple-194

mentary material at https://git.bgc-jena.mpg.de/csierra/agedisttropical.195

4 Results196

4.1 Model-data assimilation197

We obtained 1000 sets of parameter values of the dynamic model that provide the best fit198

between predictions and observations, taking into account the uncertainty and variabil-199

ity in GPP and steady-state carbon stocks. These parameter sets were used to compute200

uncertainty ranges for the predictions of the dynamic model, and to obtain one average201

parameter set considered as representative for the entire ensamble of parameters. Av-202

erages of the obtained parameter values, together with their uncertainty, are shown in203

Table 1204

Observations of carbon stocks along the successional sequence, together with average205

values of GPP and carbon stocks in old-growth forests, provided relatively good fit to a206
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Table 1: Mean and standard deviation (SD) of parameter values obtained from the 1000
iterations of the optimization procedure.

Parameter Mean SD

k1 2.978 0.041
k2 0.035 0.000
k3 0.027 0.011
k4 0.022 0.000
k5 2.594 0.520
k6 0.519 0.789
k7 0.024 0.015
α2,1 0.158 0.017
α3,1 0.009 0.003
α4,1 0.031 0.003
α5,1 0.251 0.061
α5,3 0.997 0.005
α6,2 0.249 0.172
α6,4 0.001 0.000
α7,5 0.256 0.144
α7,6 0.988 0.045

linear autonomous compartmental system with seven pools (Figure 2). The variability in207

model predictions was much lower for the wood and the coarse root biomass pools than208

for other ecosystem pools. Except for soil carbon, the model predicts rapid accumulation209

of carbon during succession consistent with previous analyses for this chronosequence210

(Sierra et al., 2007a; Yepes et al., 2010; del Valle et al., 2011; Sierra et al., 2012).211

The model predicts a steady-state carbon stock of 263.9 ± 2.0 MgC ha−1, which is212

within the upper range of the observations of total carbon stocks (with soil carbon up to213

30 cm depth) of 252.4 ± 20.2 for the primary forests of the region (Sierra et al., 2007a).214

At equilibrium, total ecosystem respiration (Re) is predicted as 23.7 ± 2.5 MgC ha−1
215

yr−1, from which 70 % corresponds to autotrophic respiration (Ra, 16.7 ± 3.1 MgC ha−1
216

yr−1) and 30 % to heterotrophic respiration (Rh, 7.0 ± 1.5 MgC ha−1 yr−1).217

4.2 Fate of gross primary production218

Using the set of average parameter values (Table 1), we obtained a representative function219

for the fate of carbon once it enters the ecosystem; i.e., the amount of remaining carbon220

after photosynthetic fixation computed using equation (3) (Figure 3). The model predicts221
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Figure 2: Observations of carbon stocks along a successional sequence and range of model
predictions by fitting the model of equation (9) using observed data and random variates
of GPP and old-growth carbon stocks after year 100.

that once carbon is fixed and incorporated in the foliage mass, it is lost within a third of222

a year (k1 = 2.978 yr−1), due to autotrophic respiration (55%) and to transfers to other223

pools (45%). In particular, about 25% of the losses from the foliage pool are transferred224

to the fine root pool (α5,1), and about 16% to the wood pool (α2,1) (Table 1); however,225

carbon is lost quickly from the fine litter pool while it stays for longer in the wood pool226

(Figure 3).227

Within a few years after fixation, carbon is transferred to the soil pool where it can228

remain for some decades. However, the model predicts that 100 years after photosynthetic229

fixation, most of the carbon is lost and very small proportions remain in situ.230
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Figure 3: Fate of the annual amount of carbon fixed by photosynthesis (mean GPP =
23.98 Mg C ha−1) for the forest at equilibrium as predicted by the mean values of the
parameters. Carbon enters the ecosystem through the foliage compartment and it is
transferred to other compartments where it spends certain amount of time before being
released back to the atmosphere. After 100 years, most carbon is lost from all pools.

4.3 Age and transit time distributions231

We obtained probability distributions for the age of carbon in individual pools and for the232

entire ecosystem using equations (7) and (8), respectively (Figure 4). These distributions233

show that carbon in foliage and fine litter is mostly young (mean ages of 0.34 ± 0.01 and234

2.14 ± 0.56 yr, respectively), while other pools contain carbon with a wide mix of ages.235

Despite different biomass values among them, the wood, fine- and coarse-root biomass236

pools have relatively similar age distributions (Figure 4), with mean age values of 29.15 ±237

0.16, 38.12 ± 3.28, and 45.36 ± 0.30 yr, respectively. Although the coarse woody debris238
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pool has a very similar mean age (32.95 ± 1.24 yr), the shape of the distribution is very239

different than the distribution of other pools, with an age delay of a few years due to the240

time carbon spends in wood and coarse roots before entering this pool. The pool with241

the oldest mean age was the soil carbon pool, with a mean value of 61.85 ± 8.73 yr, and242

a relatively long tail indicating that some carbon can stay for relatively long times in the243

soil.244

The mean age for the entire ecosystem was predicted by the model as 43.15 ± 3.33245

yr, but clearly there is carbon that can be much older than this mean value. The model246

predicts that 95% of the carbon stored in the ecosystem is younger than 134.9 ± 10.0 yr247

(95% quantile of the system age distribution).248

We also obtained the transit time distribution of carbon for these forests at equilibrium249

(Figure 5a). The obtained distribution shows that 50% of the carbon that is fixed at any250

given year is lost in less than 0.50 ± 0.14 yr (median transit time), while 95% of the251

carbon is lost in less than 68.60 ± 5.53 yr. The mean transit time for the system, which252

can also be obtained dividing carbon stocks at equilibrium by GPP, was 11.24 ± 1.20 yr.253

The difference between the mean and the median transit time is large, which indicates254

that estimates of ecosystem transit times based on the stock-over-flux approach do not255

provide a good overview of the fast dynamics of carbon losses that occur early after256

carbon fixation by photosynthesis. Most of the carbon that passes quickly through the257

ecosystem and contributes to the fast transit time is contributed by the foliage and fine258

litter pools (Figure 5a). Carbon with long transit times is contributed mostly by the soil259

carbon, coarse roots, and wood biomass pools.260

5 Discussion261

Our results indicate that carbon fixed during photosynthesis in a tropical forest returns262

back to the atmosphere at a wide range of timescales, a property that is captured by the263

transit time distribution. We found that in old-grwoth tropical forests of the Porce region264

in Colombia, most of the fixed carbon is respired very quickly, with 50% of total GPP265
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Figure 4: Age density distributions for each pool and for the entire ecosystem at equilib-
rium. These densities were obtained using the average parameter values from the 1000
sets of parameters after the optimization procedure. Age densities integrate to a value
of 1, therefore their units are in yr−1. Axes for each panel are different to facilitate the
display of each distribution.

returning back to the atmosphere in half of a year after fixation. Smaller proportions266

of the annually fixed carbon are transferred to other ecosystem pools, and they are also267

gradually lost from the system. Quantiles of the transit time distribution show that 95%268

of the annual photosynthesis is lost in less than 69 years, and very small proportions may269

remain in wood, coarse roots or soil carbon for longer times.270

The concept of transit time distribution as presented here, helps to reconcile different271

types of studies on the timescales at which carbon is cycled in tropical forests. Previous272

studies with healthy tropical trees using radiocarbon techniques have shown that respired273
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Figure 5: Transit time mass distribution and contribution of different pools to the transit
time. Pool-wise mass distributions of transit times in (b) are presented on a different
scale so differences among pools can be better observed. Dotted vertical line in panel a
represent the median transit time (50% quantile) of the distribution, equivalent to 0.5
yr. Units in vertical axis represent a rate at which carbon fixed at a certain time is
respired. The integral over the entire transit time distribution is equal to total ecosystem
respiration.

carbon is generally a few years old (Muhr et al., 2013, 2018), while mean residence time274

estimates based on the aboveground biomass of inventory plots are around 50 years or275

higher (Galbraith et al., 2013; Malhi et al., 2013, 2015). However, these different estimates276

can be better explained in the context of an underlying distribution of transit (residence)277

times that can capture the fast dynamics of respiratory processes as well as the slow278

dynamics due to carbon transfers among compartments (e.g. from live biomass to coarse279

woody debris after tree mortality) and stabilization in slow cycling pools such as soil280
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carbon.281

For the old-growth tropical forests of the Porce region, we estimated a mean transit282

time of carbon of 11 yr, but the underlying transit time distribution showed, at one ex-283

treme, fast carbon losses within the first year after fixation, and at the other extreme,284

small amounts being respired only after several decades. Therefore, the transit time dis-285

tribution has a shape with a strong initial decline, suggesting that most metabolic pro-286

cesses responsible for sustaining biomass stocks operate at short (intra-annual) timescales.287

These processes are not well captured by mean transit (residence) time estimates such as288

those obtained from inventory plots, or dividing total carbon stocks by GPP.289

The model-data assimilation approach introduced here allowed us to estimate impor-290

tant ecosystem-level metrics that are very difficult to obtain from measurements alone291

such as Ra and Rh (Chambers et al., 2004). In particular, we obtained an estimate292

of NPP of 7.0 ± 1.5 MgC ha−1 yr−1 by subtracting Ra from GPP. Commonly, NPP is293

quantified in tropical forests by measuring litter production and changes in biomass from294

inventory plots, but this type of estimates can largely deviate from NPP as defined by the295

difference between GPP and Ra (Clark et al., 2001). Due to this deviation, plot-based296

estimates are often called NPP∗ to differentiate them from the flux-based definition of297

NPP (Clark et al., 2001). Indeed, the inventory based estimate of NPP∗ for old-growth298

forests of the Porce region was reported as 12.76 ± 1.36 MgC ha−1 yr−1 in Sierra et al.299

(2007b). This large difference between NPP and NPP∗ can be due to overestimations of300

the inventory-based methods such as the accounting of ingrowth of new trees to inventory301

plots; or due to overestimations of GPP from the satellite-based products, which can lead302

to large estimates of autotrophic respiration in the data-assimilation procedure. Inde-303

pendent of the reason for the disagreement, our results confirm the assertion by Clark304

et al. (2001) that these two type of approaches can give largely different estimates of net305

primary production.306

The ratio NPP:GPP, often called carbon use efficiency (CUE) (Gifford, 2003; Cham-307

bers et al., 2004; DeLucia et al., 2007; Malhi et al., 2015), gives a value of 0.3 for these308

tropical forests. According to common interpretation, this ratio suggests that 30% of309
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the photosynthetically fixed carbon is used for biomass production. Similar values for310

CUE with similar interpretations are also given by Chambers et al. (2004) and Malhi311

et al. (2013). However, we believe that this interpretation of CUE has problems since, as312

our transit time distribution showed, autotrophic respiration is composed of carbon that313

spends some time in biomass before being respired. The amount of time carbon stays in314

plant cells can vary from hours to decades, but photosynthates have to be metabolized315

from living cells for CO2 production to occur. Thus, autotrophic respiration originates316

from biomass already produced; however, most of this metabolism occurs very quickly as317

the transit time distribution suggests, giving the false impression that a large proportion318

of carbon was not used to produce biomass. As other authors have shown (Gifford, 2003;319

DeLucia et al., 2007), estimates of CUE depend largely on whether estimates are made320

on short or long periods of time, and the transit time distribution provides good support321

for avoiding an interpretation of this ratio out of the context of the timescales involved.322

We prefer to interpret the ratio NPP:GPP as the proportion of total photosynthe-323

sized carbon metabolized and respired by heterotrophs, and not by autotrophs. This324

interpretation emerges by the simple relations325

NPP

GPP
=

GPP−Ra
GPP

= 1− Ra

GPP
,

=
Ra+Rh−Ra

GPP
=

Rh

GPP
,

(10)

assuming that at equilibrium GPP and ecosystem respiration are equal, so GPP = Ra+326

Rh.327

For the old-growth forests of the Porce region, we can thus infer that 30% of total328

photosynthate is respired by heterotrophic organisms, and 70% by autotrophic organisms.329

This interpretation has little to do with an efficiency concept for biomass production, but330

rather on the partitioning of pathways that lead to oxidation of carbon-based molecules331

and return of carbon to the atmosphere as CO2. According to this interpretation, only332

30% of GPP follows a path through the network of compartments from where it can333

be respired by heterotrophs. A large proportion of the photosynthetically fixed carbon334

(70%), follows short paths through this compartmental network, with autotrophs respon-335
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sible for its return as CO2.336

A major source of uncertainty for these predictions of respiration, NPP and their337

ratios, arises from the choice of model structure for the data-assimilation procedure.338

We chose here a parsimonious model structure with constant first-order rates of carbon339

cycling and transfers among compartments. A different model structure may predict340

different shapes of the transit time distribution and the respiratory fluxes that compose341

it. Independent datasets may help to better identify appropriate model structures; for342

instance, radiocarbon measurements in carbon pools and in respired CO2 would provide343

independent measurements to confirm the predictions of the age distributions presented344

in Figure (4) (Trumbore and Barbosa De Camargo, 2013). Additional details about con-345

frontation of model predictions with radiocarbon data can be found in the supplementary346

material.347

Despite model-related uncertainties, we believe the approach introduced here pro-348

vides an alternative view of ecosystem carbon cycling that can help to interpret existing349

approaches and paradigms currently used to study the carbon cycle in tropical forests350

(e.g. Malhi et al., 2015). Data-assimilation is a useful approach to incorporate existing351

observations into ecosystem models, and obtain metrics that cannot be obtained by mea-352

surements alone. If applied to the existing networks of tropical forest plots, combined353

with satellite- and eddy-covariance-based measurements of primary production, data as-354

similation techniques can provide a better understanding of mechanisms and emergent355

properties of the carbon cycle in the tropics. The transit time distribution is a very pow-356

erful metric that integrates multiple processes of ecosystem carbon cycling across multiple357

temporal scales. Estimates of this distribution across tropical forests can thus help us to358

determine the fate of the large masses of carbon that are annually drawn down from the359

atmosphere into the tropics, and potential consequences of global change on the carbon360

cycle such as the CO2 fertilization effect.361

It has been hypothesized that as CO2 concentrations increase in the atmosphere, pri-362

mary production in tropical forest may increase (Phillips et al., 1998; Lewis, 2006; Grace363

et al., 2014; Hubau et al., 2020). If this were the case, the transit time distribution can364
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help us to predict for how long the extra carbon would stay in an ecosystem. Depending365

on how long the extra carbon stays, forests can contribute to mitigate climate change366

at policy relevant timescales (Körner, 2017). Based on the transit time distribution we367

obtained, we would expect that any increase in GPP would lead to rapid losses within one368

year, and extremely small proportions of extra carbon would stay for years or decades.369

Therefore, the CO2 fertilization effect for these ecosystems may lead to increased storage370

at timescales not necessarily relevant for climate change mitigation.371

Our results and interpretation are consistent with results from Jiang et al. (2020), who372

found that most extra-carbon in a CO2 fertilization experiment at a temperature forest373

was lost rapidly as respiration. This is indeed expected in the context of the shape of374

the transit time distribution, and if applicable to other old-growth forests worldwide, we375

would expect that extra carbon from CO2 fertilization would be lost quickly, and would376

not remain stored at timescales relevant for climate change mitigation.377

6 Conclusions378

We provide here the first estimation of the fate of carbon after photosynthesis, and of the379

transit time distribution of carbon for a tropical forest ecosystem, using a combination of380

model-data assimilation methods and the theory of timescales for compartmental dynam-381

ical systems. We estimate that for old-growth forests of the Porce region of Colombia,382

the annual photosynthetic carbon flux returns back to the atmosphere at a wide range of383

timescales; 50% of this carbon is respired in less than 0.5 yr and 95% is respired in less384

than 69 yr, with a mean transit time of 11 yr. From the annual GPP flux, about 70% of385

the carbon follows a pathway across the network of ecosystem carbon compartments that386

leads to respiration by autotrophs, while 30% follows a pathway that leads to respiration387

by heterotrophs.388

In comparison with traditional methods that estimate mean residence times in biomass,389

we offer here a new perspective to integrate multiple ecosystem processes using the age of390

respired carbon, i.e. the transit time distribution, as a unifying concept. This approach391
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also provides a new perspective for interpreting the ratio NPP:GPP, not as an efficiency392

of biomass production, but as the proportion of photosynthetic products that are not393

respired by autotrophs.394

In the context of global change and increases in atmospheric CO2 concentrations, the395

transit time distribution may offer useful insights on whether additional photosynthates396

produced by increases in GPP will remain stored in ecosystems at timescales relevant for397

mitigating climate change.398
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J., Rödenbeck, C., Sitch, S., Tramontana, G., Walker, A., Weber, U., and Reichstein,508

M. (2020). Scaling carbon fluxes from eddy covariance sites to globe: synthesis and509

evaluation of the fluxcom approach. Biogeosciences, 17(5):1343–1365.510

Keel, S. G., Siegwolf, R. T. W., and Körner, C. (2006). Canopy CO2 enrichment permits511

tracing the fate of recently assimilated carbon in a mature deciduous forest. New512

Phytologist, 172(2):319–329.513

Körner, C. (2017). A matter of tree longevity. Science, 355(6321):130–131.514

Lewis, S. L. (2006). Review. tropical forests and the changing earth system. Philo-515

sophical Transactions of the Royal Society B: Biological Sciences, 361(1465):195–210.516

10.1098/rstb.2005.1711.517

Luyssaert, S., Inglima, I., Jung, M., Richardson, A. D., Reichstein, M., Papale, D., Piao,518

S. L., Schulze, E. D., Wingate, L., Matteucci, G., Aragao, L., Aubinet, M., Beer, C.,519

Bernhofer, C., Black, K. G., Bonal, D., Bonnefond, J. M., Chambers, J., Ciais, P.,520

Cook, B., Davis, K. J., Dolman, A. J., Gielen, B., Goulden, M., Grace, J., Granier,521

A., Grelle, A., Griffis, T., Grunwald, T., Guidolotti, G., Hanson, P. J., Harding, R.,522

25

Page 25 of 31

Journal of Ecology: Confidential Review copy

Journal of Ecology: Confidential Review copy



Hollinger, D. Y., Hutyra, L. R., Kolari, P., Kruijt, B., Kutsch, W., Lagergren, F.,523

Laurila, T., Law, B. E., Le Maire, G., Lindroth, A., Loustau, D., Mahli, Y., Mateus,524

J., Migliavacca, M., Misson, L., Montagnani, L., Moncrieff, J., Moors, E. J., Munger,525

J. W., Nikinmaa, E., Ollinger, S. V., Pita, G., Rebmann, C., Roupsard, O., Saigusa,526

N., Sanz, M., Seufert, G., Sierra, C. A., Smith, M.-L., Tang, J., Valentini, R., Vesala,527

T., and Janssens, I. A. (2007). CO2 balance of boreal, temperate, and tropical forests528

derived from a global database. Global Change Biology, 13(12):2509–2537.529

Malhi, Y., Doughty, C. E., Goldsmith, G. R., Metcalfe, D. B., Girardin, C. A. J.,530

Marthews, T. R., del Aguila-Pasquel, J., Aragão, L. E. O. C., Araujo-Murakami, A.,531

Brando, P., da Costa, A. C. L., Silva-Espejo, J. E., Farfán Amézquita, F., Galbraith,532
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Reichstein, M., Arain, M. A., Cescatti, A., Kiely, G., Merbold, L., Serrano-Ortiz, P.,593

Sickert, S., Wolf, S., and Papale, D. (2016). Predicting carbon dioxide and energy fluxes594

across global fluxnet sites with regression algorithms. Biogeosciences, 13(14):4291–595

4313.596

Trumbore, S. (2006). Carbon respired by terrestrial ecosystems – recent progress and597

challenges. Global Change Biology, 12(2):141–153.598

Trumbore, S. and Barbosa De Camargo, P. (2013). Soil carbon dynamics. In Amazonia599

and Global Change, pages 451–462. American Geophysical Union (AGU).600

28

Page 28 of 31

Journal of Ecology: Confidential Review copy

Journal of Ecology: Confidential Review copy



Trumbore, S., Czimczik, C. I., Sierra, C. A., Muhr, J., and Xu, X. (2015). Non-structural601

carbon dynamics and allocation relate to growth rate and leaf habit in california oaks.602

Tree Physiology, 35(11):1206–1222.603

Vargas, R., Trumbore, S. E., and Allen, M. F. (2009). Evidence of old carbon used to604

grow new fine roots in a tropical forest. New Phytologist, 182(3):710–718.605

Waring, R. H., Landsberg, J. J., and Williams, M. (1998). Net primary production of606

forests: a constant fraction of gross primary production? Tree Physiol, 18(2):129–134.607

Yepes, A. P., del Valle, J. I., Jaramillo, S. L., and Orrego, S. A. (2010). Recuperación608

estructural en bosques sucesionales andinos de porce (antioquia, colombia). Revista de609
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Radiocarbon as a tool for model testing

Measurements of radiocarbon in ecosystem carbon pools can be used to test the adequacy

of model predictions. In particular, the pool age distributions predicted by the model and

presented in Figure (4), can be compared with radiocarbon measurements as an independent

variable for model confirmation. For this purpose, Chanca et al. (in preparation) developed

an algorithm to obtain distributions of radiocarbon in ecosystem pools to obtain the expected

variability in radiocarbon values as predicted by the model (Figure 4). Because of the

radiocarbon ‘bomb spike’ effect of the 20th century, radiocarbon values change significantly

from year to year, and their incorporation in biomass pools is time dependent.

For example, for the year 2010, we predict that for pools with fast cycling rates and

narrow age distributions such as the foliage and fine litter pools, radiocarbon values are well

constraint within a narrow range. For slow cycling pools such as soil carbon and coarse woody

debris, the range in radiocarbon values is much wider (Figure S1). For these slow cycling

pools, the number of samples required to characterize well the variability in radiocarbon

would be much higher.

Empirical measurements of radiocarbon in ecosystem pools can be used to build fre-

quency distributions that can then be inverted to obtain approximations of age distributions.

Through this method, it is possible to independently test our model predictions.
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Figure S1: Expected distributions of radiocarbon for each of the pools obtained by taking
pool age distributions and predicting the corresponding radiocarbon values from atmospheric
14CO2. These radiocarbon distributions are time-dependent, and therefore we present here
only the predictions corresponding to calendar year 2010.
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