
The fate and transit time of carbon in a

tropical forest

Carlos A. Sierra†‡ Lina M. Estupinan-Suarez† Ingrid Chanca†

Affiliations:

†Max Planck Institute for Biogeochemistry, 07745 Jena, Germany

‡Swedish University of Agricultural Sciences, 75651 Uppsala, Sweden

Email: csierra@bgc-jena.mpg.de, lestup@bgc-jena.mpg.de, ichanca@bgc-jena.mpg.

de

Author for correspondence:

Carlos A. Sierra, Max-Planck-Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745
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Abstract1

1. Tropical forests fix large quantities of carbon from the atmosphere every year; how-2

ever, the fate of this carbon as it travels through ecosystem compartments is poorly3

understood. In particular, there is a large degree of uncertainty regarding the time4

carbon spends in an ecosystem before it is respired and returns to the atmosphere5

as CO2.6

2. We estimated the fate of carbon (trajectory of photosynthetically fixed carbon7

through a network of compartments) and its transit time (time it takes carbon to8

pass through the entire ecosystem, from fixation to respiration) for an old-growth9

tropical forest located in the foothills of the Andes of Colombia.10

3. We show that on average, 50% of the carbon fixed at any given time is respired11

in less than 0.5 years, and 95% is respired in less than 69 years. The transit time12

distribution shows that carbon in ecosystems is respired on a range of timescales13

that span decades, but fast metabolic processes in vegetation dominate the return14

of carbon to the atmosphere.15

4. Synthesis. The transit time distribution integrates multiple ecosystem processes16

occurring at a wide range of timescales. It reconciles measurements of the age of17

respired CO2 with estimates of mean residence time in woody biomass, and provides18

a new approach to interpret other ecosystem level metrics such as the ratio of net19

primary production to gross primary production.20

Keywords: carbon use efficiency, ecosystem respiration, global carbon cycle, model-data21

assimilation, transit times, tropical forests.22
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1 Introduction23

The terrestrial biosphere photosynthesizes annually about 120 ± 7 PgC yr−1, a flux that24

is largely driven by productivity in the tropics (Beer et al., 2010; Jung et al., 2020) where25

gross primary production (GPP) is often larger than 30 MgC ha−1 yr−1 (Fu et al., 2018).26

Most of this photosynthetically fixed carbon is assumed to return quickly to the atmo-27

sphere, with ecosystem respiration (Re) being often as large as the GPP flux (Chambers28

et al., 2004; Fu et al., 2018; Luyssaert et al., 2007). It is likely that between 50 to 70% of29

the GPP flux in tropical ecosystems is lost as autotrophic respiration (Waring et al., 1998;30

Gifford, 2003; DeLucia et al., 2007; Chambers et al., 2004; Doughty et al., 2018); however,31

it is uncertain if the respiratory flux is composed mostly of recent photosynthates or of32

carbon that spends years to decades stored in the ecosystem.33

The time that carbon fixed as GPP spends in an ecosystem is of relevance to under-34

stand feedbacks between ecosystems and the climate system. During the time carbon35

is stored in ecosystems as organic compounds, it does not contribute to the greenhouse36

effect in the atmosphere (Noble et al., 2000; Neubauer and Megonigal, 2015; Sierra et al.,37

2020). Therefore, whether respired carbon from ecosystem is young or old, gives an idea38

of the time photosynthetically fixed carbon remains stored. This lapse of time when39

carbon is removed from the atmosphere is particularly relevant for tropical ecosystems40

given their dominance in the global GPP flux.41

Studies with tropical trees have shown that healthy mature trees respire mostly recent42

carbon assimilates (< 2 years-old carbon), but can respire decades-old carbon under43

stress (Vargas et al., 2009; Muhr et al., 2013, 2018). In fact, observational studies with44

temperate trees as well as modeling studies have shown that trees can respire carbon of45

a wide range of ages, from days- to decades-old carbon (Carbone et al., 2013; Trumbore46

et al., 2015; Ceballos-Núñez et al., 2018; Herrera-Ramı́rez et al., 2020). Therefore, one47

would expect that respiration in tropical ecosystems is composed by a mixture of carbon48

of different ages (Trumbore, 2006; Trumbore and Barbosa De Camargo, 2013), but such49

a mixture is difficult to quantify. Isotopic labelling experiments in temperate ecosystems50

have shown that respired carbon is mostly young, but with a high degree of mixing51
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difficult to characterize from the isotopic data alone (Keel et al., 2006; Hopkins et al.,52

2012).53

In contrast to isotopic labelling studies, data from permanent plots across the tropics54

suggest that carbon stays in the woody biomass pool, on average, by about 50 years or55

more (Galbraith et al., 2013; Malhi et al., 2013). Plot-level estimates of the time carbon56

stays in the woody biomass of tropical forests are commonly obtained by dividing wood57

biomass carbon stocks over stem growth. This approach relies on three main assumptions:58

1) the forests are in a dynamic equilibrium in which inputs of carbon are balanced by losses59

from mortality and respiration, 2) the obtained mean value characterizes an unknown60

underlying distribution of the time carbon spends in an ecosystem, and 3) the woody61

biomass pool is representative of the dynamics of the entire ecosystem, so dynamics62

in detritus and soil carbon pools can be ignored. Assumption 1 is reasonable for old-63

growth tropical forests because it is expected that over the long-term, climate variability,64

disturbances, and internal forest dynamics would balance the net carbon flux around a65

mean value of zero, but with important variability in fluxes from year to year (Sierra66

et al., 2009; Chambers et al., 2013). A deeper exploration of assumptions 2 and 3 may67

help to explain the large difference between tree- and plot-level estimates of the time68

carbon spends in tropical ecosystems.69

The fate of carbon through an ecosystem and the time it spends there, from photosyn-70

thesis until respiration, is well captured by the concept of transit time (Bolin and Rodhe,71

1973; Thompson and Randerson, 1999; Rasmussen et al., 2016; Sierra et al., 2017). This72

concept quantifies the time it takes carbon atoms to travel through the entire ecosystem73

and links three main ecosystem processes: photosynthesis, storage, and respiration. It74

can be expressed as a probability mass function that quantifies the time it takes to respire75

a proportion of carbon fixed at a given time. Under the assumption of equilibrium, the76

total carbon stock divided by the total input or output flux provides an estimate of the77

mean of the transit time distribution (Sierra et al., 2017). Therefore, estimates of the78

entire transit time distribution of carbon in tropical forests would help us to better un-79

derstand not only the mean time carbon spends in the woody-biomass, but also the time80
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recent photosynthates spend in trees before being respired, and the time it takes for car-81

bon that enters the soil to appear in the respiratory flux. This transit time distribution82

captures all these different processes over a wide range of timescales.83

In this manuscript, we provide an estimate of the transit time distribution of carbon in84

a tropical forest ecosystem using a data assimilation technique to parameterize a dynamic85

ecosystem model. Our main hypothesis is that the shape of the transit time distribution86

reconciles estimates of the time carbon spends in ecosystems obtained from tree- and plot-87

level methods. Furthermore, we attempt to provide here the formal theory to not only88

obtain the transit time distribution, but also metrics to characterize the fate of carbon89

inputs through the entire ecosystem as well as the age of carbon in ecosystem pools. This90

theory is then used to present an alternative interpretation of the link between GPP,91

autotrophic respiration (Ra), and net primary production (NPP).92

2 Theory93

The time that carbon spends in ecosystems can be obtained using the concept of transit94

time (Bolin and Rodhe, 1973; Thompson and Randerson, 1999; Rasmussen et al., 2016;95

Sierra et al., 2017). It characterizes the time carbon atoms spend in an ecosystem,96

from the time of carbon fixation through photosynthesis until release to the atmosphere97

through respiration in the absence of fire.98

To compute transit times, we will consider a special case of the general mathematical99

representation of ecosystem carbon dynamics that follows the compartmental system100

representation proposed in Sierra et al. (2018). Since we are concerned in this manuscript101

with tropical old-growth forests at equilibrium, we will represent carbon dynamics with102

differential equations in multiple pools using a linear autonomous compartmental system103

of the form104

dx

dt
= ẋ(t) = u + B · x(t), (1)

where the vector u represents total carbon inputs from the atmosphere to ecosystem105

pools, and the matrix B represents all cycling and transfer rates of carbon within the106
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ecosystem. Linear first order models of differential equations are the most common rep-107

resentation of carbon dynamics in ecosystem and land surface models (Luo and Weng,108

2011; Luo et al., 2017; Huang et al., 2018; Ceballos-Núñez et al., 2020). These lin-109

ear autonomous compartmental systems at equilibrium have steady-state carbon stocks110

equivalent to111

x∗ = −B−1 · u. (2)

At this equilibrium point, where inputs from photosynthesis are balanced by losses from112

ecosystem respiration, it is possible to compute the fate of carbon inputs entering at an113

arbitrary time t0, defined as the trajectory of photosynthetically fixed carbon through114

the network of ecosystem compartments. This fate of carbon can be computed using115

the matrix exponential of the compartmental matrix (Sierra et al., 2020). Explicitly, the116

mass of carbon remaining in the ecosystem after photosynthetic fixation can be obtained117

as118

M (t) = e(t−t0)B · u, (3)

where e(t−t0)B is the matrix exponential. In other words, photosynthetic inputs are lost119

from the ecosystem according to an exponential term that takes into account possible120

transfers of matter among compartments that are encapsulated in the matrix B.121

Carbon that is lost from each pool and that is not transferred to other pools is lost122

from the system as respiration. Therefore, the rate of respiratory losses can be obtained123

as the sum of all column elements of the compartmental matrix as124

zᵀ = −1ᵀ ·B, (4)

where ᵀ is the transpose operator and −1ᵀ is a row vector containing 1 (i.e., by this125

multiplication the column sum of B is obtained). Therefore, zᵀ is a row vector of rates of126

carbon loss from each pool. Total respiratory losses are thus proportional to the amount127

of carbon stored at any time t. If we focus on the fate of inputs entering at t0, we can128
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thus obtain the amount of respiratory losses as129

R(t) = zᵀ ·M (t)

= −1ᵀ ·B · e(t−t0)B · u
(5)

This function represent how carbon that enters at a particular time t0 is lost from the130

system. This equation is virtually similar to the transit time distribution function derived131

by Metzler and Sierra (2018) and expressed as132

fT (τ) = −1ᵀ ·B · eτB · u

‖u‖
, (6)

Assuming that τ = t − t0, we can see that equations (5) and (6) are identical, with the133

only difference that fT (τ) is a density function that integrates to the value of one, while134

R(t) is a mass function that integrates to the total input mass ‖u‖. The symbol ‖ ‖135

represents the sum of all elements inside the vector.136

We can see now that the transit time distribution can be interpreted as the time it137

takes for carbon entering the ecosystem as GPP to appear in the respiratory flux.138

Rasmussen et al. (2016) have previously shown that the mean transit time is composed139

by the contribution to respiration of ecosystem carbon pools with specific mean ages. It140

is therefore of interest to compute the age distribution for each individual pool and for141

the entire ecosystem. According to Metzler and Sierra (2018), the vector of density142

distributions of age for individual pools can be obtained as143

fa(τ) = (X∗)−1 · eτ B · u (7)

where X∗ = diag (x∗1, x
∗
2, . . . , x

∗
n) is the diagonal matrix with the steady-state vector of144

carbon stocks as components. The age distribution function for the entire system is given145

by146

fA(τ) = −1ᵀ ·B · eτB · x∗

‖x∗‖
. (8)

These age distributions can help us to better understand how carbon of different ages147
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contributes to the total respiratory flux in an ecosystem.148

3 Methods149

To obtain the transit time distribution of carbon for an old-growth tropical forest ecosys-150

tem, we implemented a model-data assimilation procedure that integrates a compartmen-151

tal dynamical model with carbon stock and flux data from a tropical pre-montane region152

in Colombia. We used carbon stock data collected at the Porce region of Colombia (6◦ 45’153

37 N, 75◦ 06’ 28” W, 800–1000 m elevation above sea level, 2078 mm mean annual precip-154

itation, 21.3 ◦C mean annual temperature), where intensive studies have been conducted155

to obtain carbon accumulation over time along a sequence of secondary forests recovering156

from grazing and agricultural land use (Sierra et al., 2007a; Yepes et al., 2010; del Valle157

et al., 2011; Sierra et al., 2012). The landscape also contains elements of old-growth158

forests with no evidence of previous disturbance. The most relevant species in the old-159

growth forests, according to their abundance, density and dominance (importance value160

index), are Oenocarpus bataua Mart., Pourouma cecropiaefolia Mart., Jacaranda copaia161

(Aubl.) D. Don, Anacardium excelsum (Bertero and Balb. ex Kunth), and Euterpe sp.162

(Yepes et al., 2010).163

We used data previously collected on above- and belowground biomass, the biomas164

of fine and coarse roots, the mass of fine litter and coarse woody debris, and soil carbon165

stocks up to 30 cm depth (Table 1). We used data from 33 plots from secondary forests166

where we have a comprehensive inventory of all major carbon stocks, using locally derived167

biomass equations for trees, palms, and coarse roots, and measurements of individual trees168

with diameter at breast height > 1 cm (Sierra et al., 2007a; Yepes et al., 2010; del Valle169

et al., 2011). We also used estimates of carbon stocks for the old-growth forests were170

similar measurements were conducted.171

Together, these observations were used in a data assimilation procedure to fit a linear172

compartmental system of the form of equation (1), using as carbon inputs satellite-derived173

estimes of GPP for the region as reported in Tramontana et al. (2016) and Ryu et al.174
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Table 1: Summary of field data used for obtaining ecosystem carbon pools from the
study area. Specific details about sampling plots, biomass equations, and replication can
be found in Sierra et al. (2007a), and Sierra et al. (2012). All data is provided in the
supplementary material.

Ecosystem C pool Field measurement Method

Foliage and Wood Tree aboveground biomass Local biomass equations and plot inventories
Palm aboveground biomass Local biomass equations and plot inventories
Herbaceous vegetation Sampling quadrants within plots

Fine roots Fine root biomass Soil core sampling, root diameter < 5 mm.
Coarse roots Coarse root biomass Local biomass equations and plot inventories
Fine litter Fine litter mass Sampling quadrants within plots
Coarse woody debris Coarse woody debris mass Subplot sampling
Soil carbon Soil organic carbon from 0-15

and 15-30 cm depth
Soil core sampling

(2011) (updated in Jiang and Ryu, 2016). In particular, we used the average ± standard175

deviation of GPP for the period between 2001 and 2015 from Jiang and Ryu (2016) at 1176

km and 8 day resolution, which gives a value of 22.89 ± 2.46 MgC ha−1 yr−1. Average177

GPP for the same period at 10 km and 8 day resolution from Tramontana et al. (2016)178

gives a value of 24.4 ± 1.02 MgC ha−1 yr−1. A combined estimate of GPP for the region179

with uncertainty propagation gives a value of 23.98 ± 2.36 MgC ha−1 yr−1 (see code in180

supplementary material).181

The model has seven pools, x1: foliage, x2: wood, x3: fine roots, x4: coarse roots, x5:182

fine litter, x6: coarse woody debris, and x7: soil carbon from 0 to 30 cm depth (Figure183

1). In the model, all carbon fixed as GPP enters through the foliage compartment; i.e.184

u1 = GPP, and from there carbon is transferred to the x2, x3, and x4 pools according to185

transfer coefficients αi,j that represent the proportional transfers of material from pool j186

to pool i. We make the implicit assumption that photosynthetically fixed carbon stored187

as non-structural carbohydrates in the foliage can be mobilized and allocated to wood,188

fine and coarse roots. Transfers from the vegetation pools to the litter and soil pools were189

also represented using transfer coefficients αi,j. In particular, the dynamic model has the190

form191
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Foliage

Coarse roots

Soil Carbon

GPP

Fine litterCoarse woody
      debris 

 Fine roots 

Atmosphere

Wood

Figure 1: Structure of the compartmental model used to fit the available data from the
Porce region of Colombia. Arrows represent transfers of carbon among pools (continuous
line) or respiratory losses (dashed lines) to the atmosphere. Autotrophic respiration fluxes
in dark blue and heterotrophic respiration fluxes in dark red.
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ẋ1

ẋ2
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ẋ5

ẋ6
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, (9)

where the cycling rates for each pool i are denoted as ki, and the transfer coefficients192

from a pool j to a pool i are denoted as αi,j.193

Measurements of aboveground tree biomass and palm biomass were aggregated and194
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transformed to foliage biomass using a fraction of foliage of 0.08 (Zapata and del Valle,195

2001). This foliage fraction is based on site-level measurements used for the development196

of local biomass equations (Sierra et al., 2007a). Measurements of biomass of herbaceous197

vegetation were added to this foliage biomass pool. To obtain values for the wood biomass198

pool, we used the aggregated values of tree and palm aboveground biomass multiplied by199

a fraction of wood biomass of 0.92.200

The data-assimilation procedure used random variates of GPP and carbon stocks in201

old-growth forests sampled from a normal distribution of mean values with their corre-202

sponding standard deviation. We used 1000 random variates for GPP and 33 random203

variates (equivalent to the original sample size) for the old-growth carbon stocks, which204

were used to find 1000 sets of parameter values for the model using the Levenberg-205

Marquardt optimization algorithm (Soetaert and Petzoldt, 2010). The algorithm finds206

parameter values that minimize the difference between model predictions and the join set207

of observations of carbon stocks for all pools.208

Using the average of the entire set of parameter values, we computed representative209

distributions of age and transit time using equations (7), (8), and (6). We also obtained210

estimates of autotrophic (Ra) and heterotrophic respiration (Rh) by splitting the vector211

of respiration for all pools (equation 5) between autotrophic pools (foliage, wood, fine212

and coarse roots) and heterotrophic pools (fine litter, coarse woody debris, soil carbon),213

respectively. With these respiration estimates, we then computed net primary production214

NPP as the difference GPP - Ra.215

All computations were performed in R version 4.0, and code to reproduce all results216

is available as supplementary material at doi: 10.5281/zenodo.4893606.217

4 Results218

4.1 Model-data assimilation219

We obtained 1000 sets of parameter values of the dynamic model that provide the best fit220

between predictions and observations, taking into account the uncertainty and variabil-221
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ity in GPP and steady-state carbon stocks. These parameter sets were used to compute222

uncertainty ranges for the predictions of the dynamic model, and to obtain one average223

parameter set considered as representative for the entire ensamble of parameters. Av-224

erages of the obtained parameter values, together with their uncertainty, are shown in225

Table 2.226

Table 2: Mean and standard deviation (SD) of parameter values obtained from the 1000
iterations of the optimization procedure. Values of cycling rates are given in units of
yr−1, and values of transfer coefficients are unitless (proportion between 0 and 1).

Parameter Description Mean SD

k1 Cycling rate in foliage 2.978 0.041
k2 Cycling rate in wood 0.035 0.000
k3 Cycling rate in fine roots 0.027 0.011
k4 Cycling rate in coarse roots 0.022 0.000
k5 Cycling rate in fine litter 2.594 0.520
k6 Cycling rate in coarse woody debris 0.519 0.789
k7 Cycling rate in soil carbon 0.024 0.015
α2,1 Proportion transferred from foliage to wood 0.158 0.017
α3,1 Proportion transferred from foliage to fine roots 0.009 0.003
α4,1 Proportion transferred from foliage to coarse roots 0.031 0.003
α5,1 Proportion transferred from foliage to fine litter 0.251 0.061
α5,3 Proportion transferred from fine roots to fine litter 0.997 0.005
α6,2 Proportion transferred from wood to coarse woody debris 0.249 0.172
α6,4 Proportion transferred from coarse roots to coarse woody debris 0.001 0.000
α7,5 Proportion transferred from fine litter to soil carbon 0.256 0.144
α7,6 Proportion transferred from coarse woody debris to soil carbon 0.988 0.045

Observations of carbon stocks along the successional sequence, together with possible227

values of GPP and carbon stocks in old-growth forests, provided relatively good fit to a228

linear autonomous compartmental system with seven pools (Figure 2). The variability in229

model predictions was much lower for the wood and the coarse root biomass pools than230

for other ecosystem pools. Except for soil carbon, the model predicts rapid accumulation231

of carbon in all compartment during succession consistent with previous analyses for this232

chronosequence (Sierra et al., 2007a; Yepes et al., 2010; del Valle et al., 2011; Sierra et al.,233

2012).234

The model predicts a steady-state carbon stock of 263.9 ± 2.0 MgC ha−1, which is235

within the upper range of the observations of total carbon stocks (with soil carbon up to236
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Figure 2: Observations of carbon stocks (points) along a successional sequence and range
of model predictions by fitting the model of equation (9). Gray areas represent the entire
range of 1000 predictions produced by the model. (a) Foliage and fine litter pools, (b)
wood and coarse root pools, (c) fine roots and coarse woody debris, (d) soil carbon to 30
cm depth.

30 cm depth) of 252.4 ± 20.2 for the primary forests of the region (Sierra et al., 2007a).237

At equilibrium, total ecosystem respiration (Re) is predicted as 23.7 ± 2.5 MgC ha−1
238

yr−1, from which 70 % corresponds to autotrophic respiration (Ra, 16.7 ± 3.1 MgC ha−1
239

yr−1) and 30 % to heterotrophic respiration (Rh, 7.0 ± 1.5 MgC ha−1 yr−1).240

4.2 Fate of gross primary production241

Using the set of average parameter values (Table 2), we obtained a representative function242

for the fate of carbon once it enters the ecosystem; i.e., the amount of remaining carbon243
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after photosynthetic fixation computed using equation (3) (Figure 3). The model predicts244

that once carbon is fixed and incorporated in the foliage mass, it is lost within a third of245

a year (k1 = 2.978 yr−1), due to autotrophic respiration (55%) and to transfers to other246

pools (45%). In particular, about 25% of the losses from the foliage pool are transferred247

to the fine root pool (α5,1), and about 16% to the wood pool (α2,1) (Table 2); however,248

carbon is lost quickly from the fine litter pool while it stays for longer in the wood pool249

(Figure 3).250

Within a few years after fixation, carbon is transferred to the soil pool where it can251

remain for some decades. However, the model predicts that 100 years after photosynthetic252

fixation, most of the carbon is lost and very small proportions remain in situ.253

4.3 Age and transit time distributions254

We obtained probability distributions for the age of carbon in individual pools and for the255

entire ecosystem using equations (7) and (8), respectively (Figure 4). These distributions256

show that carbon in foliage and fine litter is mostly young (mean ages of 0.34 ± 0.01 and257

2.14 ± 0.56 yr, respectively), while other pools contain carbon with a wide mix of ages.258

Despite different biomass values among them, the wood, fine- and coarse-root biomass259

pools have relatively similar age distributions (Figure 4), with mean age values of 29.15 ±260

0.16, 38.12 ± 3.28, and 45.36 ± 0.30 yr, respectively. Although the coarse woody debris261

pool has a very similar mean age (32.95 ± 1.24 yr), the shape of the distribution is very262

different than the distribution of other pools, with an age delay of a few years due to the263

time carbon spends in wood and coarse roots before entering this pool. The pool with264

the oldest mean age was the soil carbon pool, with a mean value of 61.85 ± 8.73 yr, and265

a relatively long tail indicating that some carbon can stay for hundreds of years in the266

soil.267

The mean age of carbon for the entire ecosystem was predicted by the model as 43.15268

± 3.33 yr, and the median age was 28.6 ± 2.4 yr, but clearly there is carbon that can269

be much older than these mean or median values. The model predicts that 95% of the270

carbon stored in the ecosystem is younger than 134.9 ± 10.0 yr (95% quantile of the271
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Figure 3: Fate of the annual amount of carbon fixed by photosynthesis (mean GPP =
23.98 Mg C ha−1) for the forest at equilibrium as predicted by the mean values of the
parameters of the model. Carbon enters the ecosystem through the foliage compartment
and it is transferred to other compartments where it spends certain amount of time
before being released back to the atmosphere. After 100 years, most carbon is lost from
all pools, although small proportions can remain in the soil pool for a few hundred years.
The figure is split in two panels due to differences in scale of the vertical axis.

system age distribution).272

We also obtained the transit time distribution of carbon for these forests at equilibrium273

(Figure 5a). The obtained distribution shows that 50% of the carbon that is fixed at any274

given year is lost in less than 0.50 ± 0.14 yr (median transit time), while 95% of the275

carbon is lost in less than 68.60 ± 5.53 yr. The mean transit time for the system, which276

can also be obtained dividing carbon stocks at equilibrium by GPP, was 11.24 ± 1.20 yr.277

The difference between the mean and the median transit time is large, which indicates278
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Figure 4: Age density distributions for each pool and for the entire ecosystem at equilib-
rium. These densities were obtained using the average parameter values from the 1000
sets of parameters after the optimization procedure. Age densities integrate to a value
of 1, therefore their units are in yr−1. Axes for each panel are different to facilitate the
display of each distribution.

that estimates of ecosystem transit times based on the stock-over-flux approach do not279

provide a good overview of the fast dynamics of carbon losses that occur early after280

carbon fixation by photosynthesis. Most of the carbon that passes quickly through the281

ecosystem and is responsible for the fast transit time is contributed by the foliage and282

fine litter pools (Figure 5a). Carbon with long transit times is contributed mostly by the283

soil carbon, coarse roots, and wood biomass pools.284
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Figure 5: Transit time mass distribution and contribution of different pools to the transit
time. Pool-wise mass distributions of transit times in (b) are presented on a different
scale so differences among pools can be better observed. Dotted vertical line in panel
(a) represents the median transit time (50% quantile) of the distribution, equivalent to
0.5 yr. Units in vertical axis represent a rate at which carbon fixed at a certain time is
respired. The integral over the entire transit time distribution is equal to total ecosystem
respiration.

5 Discussion285

Our results indicate that carbon fixed during photosynthesis in a tropical forest returns286

back to the atmosphere at a wide range of timescales, a property that is captured by the287

transit time distribution. We found that in old-growth tropical forests of the Porce region288

in Colombia, most of the fixed carbon is respired very quickly, with 50% of total GPP289

returning back to the atmosphere in half of a year after fixation. Smaller proportions290
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of the annually fixed carbon are transferred to other ecosystem pools, and they are also291

gradually lost from the system. Quantiles of the transit time distribution show that 95%292

of the annual photosynthesis is lost in less than 69 years, and very small proportions may293

remain in wood, coarse roots or soil carbon for longer times.294

The concept of transit time distribution as presented here, helps to reconcile different295

types of studies on the timescales at which carbon is cycled in tropical forests. Previous296

studies with healthy tropical trees using radiocarbon techniques have shown that respired297

carbon is generally a few years old (Muhr et al., 2013, 2018), while mean residence time298

estimates based on the aboveground biomass of inventory plots are around 50 years or299

higher (Galbraith et al., 2013; Malhi et al., 2013, 2015). However, these different estimates300

can be better explained in the context of an underlying distribution of transit (residence)301

times that can capture the fast dynamics of respiratory processes as well as the slow302

dynamics due to carbon transfers among compartments (e.g. from live biomass to coarse303

woody debris after tree mortality) and stabilization in slow cycling pools such as soil304

carbon. Previous radiocarbon studies in tropical soils have shown that soil carbon and305

heterotrophic respiration is mostly young, with small proportions that can persist in soils306

for hundreds of years (Trumbore, 1993; Trumbore and Barbosa De Camargo, 2013), in307

agreement with our results.308

For the old-growth tropical forests of the Porce region, we estimated a mean transit309

time of carbon of 11 yr, but the underlying transit time distribution showed, at one ex-310

treme, fast carbon losses within the first year after fixation, and at the other extreme,311

small amounts being respired only after several decades. Therefore, the transit time distri-312

bution has a shape with a strong initial decline, suggesting that most metabolic processes313

responsible for sustaining biomass stocks operate at short (intra-annual) timescales (Fig-314

ure 5). These processes are not well captured by mean transit (residence) time estimates315

such as those obtained from inventory plots alone, or dividing total carbon stocks by316

GPP.317

The model-data assimilation approach introduced here allowed us to estimate impor-318

tant ecosystem-level metrics that are very difficult to obtain from measurements alone319
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such as Ra and Rh (Chambers et al., 2004). In particular, we obtained an estimate320

of NPP of 7.0 ± 1.5 MgC ha−1 yr−1 by subtracting Ra from GPP. Commonly, NPP321

is quantified in tropical forests by measuring litter production, fine-root growth, and322

changes in biomass from inventory plots, but this type of estimates can largely deviate323

from NPP as defined by the difference between GPP and Ra (Clark et al., 2001). Due324

to this deviation, plot-based estimates are often called NPP∗ to differentiate them from325

the flux-based definition of NPP (Clark et al., 2001). Indeed, the inventory-based esti-326

mate of NPP∗ for old-growth forests of the Porce region was reported as 12.76 ± 1.36327

MgC ha−1 yr−1 in Sierra et al. (2007b). This large difference between NPP and NPP∗
328

can be due to overestimations of the inventory-based methods such as the accounting329

of ingrowth of new trees to inventory plots; or due to overestimations of GPP from the330

satellite-based products, which can lead to large estimates of autotrophic respiration in331

the data-assimilation procedure. Independent of the reason for the disagreement, our332

results confirm the assertion by Clark et al. (2001) that these two type of approaches can333

give largely different estimates of net primary production.334

We obtained an average value of 0.3 for the ratio NPP:GPP for the forests at equilib-335

rium, a ratio that is often called carbon use efficiency (CUE) (Gifford, 2003; Chambers336

et al., 2004; DeLucia et al., 2007; Malhi et al., 2015). According to common interpreta-337

tion, this ratio would suggests that 30% of the photosynthetically fixed carbon is used for338

biomass production. Similar values for CUE with similar interpretations are also given339

by Chambers et al. (2004) and Malhi et al. (2013), although larger variability in CUE is340

reported in Doughty et al. (2018). However, we believe that this common interpretation341

of CUE has problems since, as our transit time distribution showed, autotrophic respi-342

ration is composed of carbon that spends some time in biomass before being respired.343

The amount of time carbon stays in plant cells can vary from hours to decades, but344

photosynthates have to be metabolized from living cells (biomass) for CO2 production to345

occur. Thus, autotrophic respiration originates from biomass already produced; however,346

most of this metabolism occurs very quickly as the transit time distribution suggests,347

giving the false impression that a large proportion of carbon was not used to produce348
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biomass. As other authors have shown (Gifford, 2003; DeLucia et al., 2007), estimates349

of CUE depend largely on whether estimates are made on short or long periods of time,350

and the transit time distribution provides good support for avoiding an interpretation of351

this ratio out of the context of the timescales involved.352

We prefer to interpret the ratio NPP:GPP as the proportion of total photosynthe-353

sized carbon metabolized and respired by heterotrophs, and not by autotrophs. This354

interpretation emerges by the simple relations355

NPP

GPP
=

GPP−Ra
GPP

= 1− Ra

GPP
,

=
Ra+Rh−Ra

GPP
=

Rh

GPP
,

(10)

assuming that at equilibrium GPP and ecosystem respiration are equal, so GPP = Ra+356

Rh (Raich and Nadelhoffer, 1989; Gifford, 2003).357

For the old-growth forests of the Porce region, we can thus infer that 30% of total358

photosynthate is respired by heterotrophic organisms, and 70% by autotrophic organisms.359

This interpretation has little to do with an efficiency concept for biomass production, but360

rather on the partitioning of pathways that leads to oxidation of carbon-based molecules361

and return of carbon to the atmosphere as CO2. According to this interpretation, only362

30% of GPP in old-growth forests of the Porce region follows a path through the network363

of compartments from where it can be respired by heterotrophs. A large proportion of the364

photosynthetically fixed carbon (70%), follows short paths through this compartmental365

network, with autotrophs responsible for its return as CO2.366

A major source of uncertainty for these predictions of respiration, NPP and their367

ratios, arises from the choice of model structure for the data-assimilation procedure.368

We chose here a parsimonious model structure with constant first-order rates of carbon369

cycling and transfers among compartments. A different model structure may predict dif-370

ferent shapes of the transit time distribution and the respiratory fluxes that compose it.371

Independent datasets may help to better identify appropriate model structures. Radio-372

carbon measurements in carbon pools and in respired CO2 provide an ideal independent373

measurement-based constraint that would help to confirm the model predictions of age374
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and transit time distributions. Radiocarbon in carbon stocks and CO2 can be obtained375

easily from our compartmental model (see supplementary material), and offers an oppor-376

tunity to reduce the range of uncertainties in our predictions.377

Despite model-related uncertainties, we believe the approach introduced here pro-378

vides an alternative view of ecosystem carbon cycling that can help to interpret existing379

approaches and paradigms currently used to study the carbon cycle in tropical forests380

(e.g. Malhi et al., 2015). Data-assimilation is a useful approach to incorporate existing381

observations into ecosystem models, and obtain metrics that cannot be obtained by mea-382

surements alone. If applied to the existing networks of tropical forest plots, combined383

with satellite- and eddy-covariance-based measurements of primary production, data as-384

similation techniques can provide a better understanding of mechanisms and emergent385

properties of the carbon cycle in the tropics. The transit time distribution is a very pow-386

erful metric that integrates multiple processes of ecosystem carbon cycling across multiple387

temporal scales. Estimates of this distribution across tropical forests can thus help us to388

determine the fate of the large masses of carbon that are annually drawn down from the389

atmosphere into the tropics, and potential consequences of global change on the carbon390

cycle.391

6 Conclusions392

We provide here the first estimation of the fate of carbon after photosynthesis, and of the393

transit time distribution of carbon for a tropical forest ecosystem, using a combination of394

model-data assimilation methods and the theory of timescales for compartmental dynam-395

ical systems. We estimate that for old-growth forests of the Porce region of Colombia,396

the annual photosynthetic carbon flux returns back to the atmosphere at a wide range of397

timescales; 50% of this carbon is respired in less than 0.5 yr and 95% is respired in less398

than 69 yr, with a mean transit time of 11 yr. From the annual GPP flux, about 70% of399

the carbon follows a pathway across the network of ecosystem carbon compartments that400

leads to respiration by autotrophs, while 30% follows a pathway that leads to respiration401
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by heterotrophs.402

In comparison with traditional methods that estimate mean residence times in biomass,403

we offer here a new perspective to integrate multiple ecosystem processes using the age of404

respired carbon, i.e. the transit time distribution, as a unifying concept. This approach405

also provides a new perspective for interpreting the ratio NPP:GPP, not as an efficiency406

of biomass production, but as the proportion of photosynthetic products that are not407

respired by autotrophs.408
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J. Q., and Trumbore, S. E. (2013). Carbon dioxide emitted from live stems of tropical533

trees is several years old. Tree Physiology, 33(7):743–752.534

Muhr, J., Trumbore, S., Higuchi, N., and Kunert, N. (2018). Living on borrowed time535

– amazonian trees use decade-old storage carbon to survive for months after complete536

stem girdling. New Phytologist, 220(1):111–120.537

Neubauer, S. C. and Megonigal, J. P. (2015). Moving beyond global warming potentials538

to quantify the climatic role of ecosystems. Ecosystems, 18(6):1000–1013.539

Noble, I., Apps, M., Houghton, R., Lashof, D., Makundi, W., Murdiyarso, D., Murray,540

B., Sombroek, W., , and Valentini, R. (2000). Implications of different definitions and541

generic issues. In Watson, R. T., Noble, I. R., Bolin, B., Ravindranath, N. H., Verardo,542

D. J., and Dokken, D. J., editors, Land Use, Land Use Change, and Forestry, pages543

53–156. Cambridge University Press.544

Raich, J. and Nadelhoffer, K. (1989). Belowground carbon allocation in forest ecosystems:545

global trends. Ecology, 70(5):1346–1354.546

Rasmussen, M., Hastings, A., Smith, M. J., Agusto, F. B., Chen-Charpentier, B. M.,547

Hoffman, F. M., Jiang, J., Todd-Brown, K. E. O., Wang, Y., Wang, Y.-P., and Luo,548

Y. (2016). Transit times and mean ages for nonautonomous and autonomous compart-549

mental systems. Journal of Mathematical Biology, 73(6):1379–1398.550

Ryu, Y., Baldocchi, D. D., Kobayashi, H., van Ingen, C., Li, J., Black, T. A., Beringer, J.,551

van Gorsel, E., Knohl, A., Law, B. E., and Roupsard, O. (2011). Integration of modis552

land and atmosphere products with a coupled-process model to estimate gross primary553

productivity and evapotranspiration from 1 km to global scales. Global Biogeochemical554

Cycles, 25(4).555

Sierra, C., del Valle, J., and Restrepo, H. (2012). Total carbon accumulation in a tropical556

forest landscape. Carbon Balance and Management, 7(1):12.557

27
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Bioloǵıa Tropical, 58:427–445.601

Zapata, M. and del Valle, J. I. (2001). Ecuaciones de biomasa aérea para los bosques602
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