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carbon in these ecosystems, the fate of the fixed carbon as it travels 
through ecosystem compartments is poorly understood. Using a model-
data assimilation approach, we quantified the fate of carbon (trajectory 
of photosynthetically fixed carbon through a network of ecosystem 
compartments) and its transit time (the time it takes carbon to pass 
through the entire ecosystem, from fixation to respiratory release) for an 
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average, 50% of the carbon fixed at any given time is respired in less 
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time distribution shows  that carbon in ecosystems is respired on a range 
of timescales that span decades, but fast metabolic processes in 
vegetation dominate the return of carbon to the atmosphere. These fast 
processes are not well captured by estimates of the mean residence time 
of biomass based on data from inventory plots, or the ratio of gross 
primary production to the total carbon stock. We show here that the 
shape of the transit time distribution helps to better understand 
timescales of carbon storage in ecosystems and can be used to infer 
whether CO2 fertilization of tropical forests have consequences on 
timescales relevant for climate change mitigation. In addition, the transit 
time distribution provides a new approach to interpret other ecosystem 
level metrics such as the ratio of net primary production (NPP) to gross 
primary production (GPP). We propose here an alternative interpretation 
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Abstract1

Tropical forests fix large quantities of carbon from the atmosphere on an annual basis,2

and despite much research quantifying stocks and fluxes of carbon in these ecosys-3

tems, the fate of the fixed carbon as it travels through ecosystem compartments is4

poorly understood. Using a model-data assimilation approach, we quantified the fate5

of carbon (trajectory of photosynthetically fixed carbon through a network of ecosys-6

tem compartments) and its transit time (the time it takes carbon to pass through the7

entire ecosystem, from fixation to respiratory release) for an old-growth tropical forest8

ecosystem in Colombia. We show that on average, 50% of the carbon fixed at any9

given time is respired in less than 0.5 years, and 95% is respired in less than 69 years.10

The transit time distribution shows that carbon in ecosystems is respired on a range11

of timescales that span decades, but fast metabolic processes in vegetation dominate12

the return of carbon to the atmosphere. These fast processes are not well captured by13

estimates of the mean residence time of biomass based on data from inventory plots,14

or the ratio of gross primary production to the total carbon stock. We show here15

that the shape of the transit time distribution helps to better understand timescales16

of carbon storage in ecosystems and can be used to infer whether CO2 fertilization17

of tropical forests have consequences on timescales relevant for climate change mitiga-18

tion. In addition, the transit time distribution provides a new approach to interpret19

other ecosystem level metrics such as the ratio of net primary production (NPP) to20

gross primary production (GPP). We propose here an alternative interpretation of the21

NPP:GPP ratio based on the fate and respiratory pathway at which carbon returns to22

the atmosphere after fixation.23

Keywords: global carbon cycle, tropical forests, model-data assimilation, transit times,24

ecosystem respiration, carbon use efficiency.25
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1 Introduction26

The terrestrial biosphere photosynthesizes annually about 120 ± 7 PgC yr−1, a flux that is27

largely driven by productivity in the tropics (Beer et al., 2010; Jung et al., 2020) where gross28

primary production (GPP) is often larger than 30 MgC ha−1 yr−1 (Fu et al., 2018). Most29

of this photosynthetically fixed carbon is assumed to return quickly to the atmosphere, with30

ecosystem respiration (Re) being often as large as the GPP flux (Chambers et al., 2004;31

Luyssaert et al., 2007; Fu et al., 2018). It is likely that between 50 to 70% of the GPP flux32

in tropical ecosystems is lost as autotrophic respiration (Waring et al., 1998; Gifford, 2003;33

DeLucia et al., 2007; Chambers et al., 2004); however, it is uncertain if the respiratory flux is34

composed mostly of recent photosynthates or of carbon that spends years to decades stored35

in the ecosystem.36

The time that carbon fixed as GPP spends in an ecosystem is of relevance to understand37

feedbacks between ecosystems and the climate system. During the time carbon is stored38

in ecosystems as organic compounds, it is removed from radiative effects in the atmosphere39

(Noble et al., 2000; Neubauer and Megonigal, 2015; Sierra et al., 2020). Therefore, whether40

respired carbon from ecosystem is young or old, gives an idea of the time photosynthetically41

fixed carbon remains stored. This lapse of time when carbon is removed from the atmosphere42

is particularly relevant for tropical ecosystems given their dominance in the global GPP flux.43

Studies with tropical trees have shown that healthy mature trees respire mostly recent44

carbon assimilates (< 2 years-old carbon), but can respire decades-old carbon under stress45

(Vargas et al., 2009; Muhr et al., 2013, 2018). In fact, observational studies with temperate46

trees as well as modeling studies have shown that trees can respire carbon of a wide range47

of ages, from days- to decades-old carbon (Carbone et al., 2013; Trumbore et al., 2015;48

Ceballos-Núñez et al., 2018; Herrera-Ramı́rez et al., 2020). Therefore, one would expect49

that respiration in tropical ecosystems is composed by a mixture of carbon of different ages50

(Trumbore, 2006; Trumbore and Barbosa De Camargo, 2013), but such a mixture is difficult51

to quantify. Isotopic labelling experiments in temperate ecosystems have shown that respired52

3
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carbon is mostly young, but with a high degree of mixing difficult to characterize from the53

isotopic data alone (Keel et al., 2006; Hopkins et al., 2012).54

In contrast to isotopic labelling studies, data from permanent plots across the tropics sug-55

gest that carbon stays in woody biomass, on average, by about 50 years or more (Galbraith56

et al., 2013; Malhi et al., 2013). Plot-level estimates of the time carbon stays in the woody57

biomass of tropical forests are commonly obtained by dividing wood biomass carbon stocks58

over stem growth. This approach relies on three main assumptions: 1) the forests are in a59

dynamic equilibrium in which inputs of carbon are balanced by losses from mortality and60

respiration, 2) the obtained mean value characterizes an unknown underlying distribution of61

the time carbon spends in an ecosystem, and 3) the woody biomass pool is representative of62

the dynamics of the entire ecosystem, so dynamics in detritus and soil carbon pools can be63

ignored. Assumption 1 is reasonable for old-growth tropical forests because it is expected64

that over the long-term, climate variability, disturbances, and internal forest dynamics would65

balance the net carbon flux around a mean value of zero, but with important variability in66

fluxes from year to year (Sierra et al., 2009; Chambers et al., 2013). A deeper exploration67

of assumptions 2 and 3 may help to explain the large difference between tree- and plot-level68

estimates of the time carbon spends in tropical ecosystems.69

The fate of carbon through an ecosystem and the time it spends there, from photosyn-70

thesis until respiration, is well captured by the concept of transit time (Bolin and Rodhe,71

1973; Rasmussen et al., 2016; Sierra et al., 2017). This concept quantifies the time it takes72

carbon atoms to travel through the entire ecosystem and links three main ecosystem pro-73

cesses: photosynthesis, storage, and respiration. It can be expressed as a probability mass74

function that quantifies the time it takes to respire a proportion of carbon fixed at a given75

time. Under the assumption of equilibrium, the total carbon stock divided by the total input76

or output flux provides an estimate of the mean of the transit time distribution. Therefore,77

estimates of the entire transit time distribution of carbon in tropical forests would help us78

to better understand not only the mean time carbon spends in the woody-biomass, but also79

4
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the time recent photosynthates spend in trees before being respired, and the time it takes for80

carbon that enters the soil to appear in the respiratory flux. This transit time distribution81

should capture all these different processes over a wide range of timescales.82

In this manuscript, we provide an estimate of the transit time distribution of carbon in83

a tropical forest ecosystem using a data assimilation technique to parameterize a dynamic84

ecosystem model. Our main hypothesis is that the shape of the transit time distribution85

reconciles estimates of the time carbon spends in ecosystems obtained from tree- and plot-86

level methods. Furthermore, we attempt to provide here the formal theory to not only87

obtain the transit time distribution, but also metrics to characterize the fate of carbon inputs88

through the entire ecosystem as well as the age of carbon in ecosystem pools. This theory89

is then used to present an alternative interpretation of the link between GPP, autotrophic90

respiration (Ra), and net primary production (NPP).91

2 Theory92

The time that carbon spends in ecosystems can be obtained using the concept of transit93

time (Bolin and Rodhe, 1973; Thompson and Randerson, 1999; Rasmussen et al., 2016;94

Sierra et al., 2017). It characterizes the time carbon atoms spend in an ecosystem, from the95

time of carbon fixation by photosynthesis until release to the atmosphere through respiration96

in the absence of fire.97

To compute transit times, we will consider a special case of the general mathematical98

representation of ecosystem carbon dynamics that follows the compartmental system repre-99

sentation proposed in Sierra et al. (2018). Since we are concerned in this manuscript with100

tropical old-growth forests at equilibrium, we will represent carbon dynamics in multiple101

pools using a linear autonomous compartmental system of the form102

dx

dt
= ẋ(t) = u + B · x(t), (1)

5
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where the vector u represents total carbon inputs from the atmosphere to ecosystem pools,103

and the matrix B represents all cycling and transfer rates of carbon within the ecosystem.104

These linear autonomous compartmental systems at equilibrium have steady-state carbon105

stocks equivalent to106

x∗ = −B−1 · u. (2)

At this equilibrium point, where inputs from photosynthesis are balanced by losses from107

ecosystem respiration, it is possible to compute the fate of carbon inputs entering at an108

arbitrary time t0 using the matrix exponential of the compartmental matrix (Sierra et al.,109

2020). Explicitly, the mass of carbon remaining in the ecosystem after photosynthetic fixation110

can be obtained as111

M (t) = e(t−t0)B · u, (3)

where e(t−t0)B is the matrix exponential. In other words, photosynthetic inputs are lost from112

the ecosystem according to an exponential term that takes into account possible transfers of113

matter among compartments.114

Carbon that is lost from each pool and that is not transferred to other pools is lost from115

the system as respiration. Therefore, the rate of respiratory losses can be obtained as the116

sum of all column elements of the compartmental matrix as117

zᵀ = −1ᵀ ·B, (4)

where ᵀ is the transpose operator and −1ᵀ is a row vector containing 1 (i.e., by this multi-118

plication the column sum of B is obtained). Therefore, zᵀ is a row vector of rates of carbon119

loss from each pool. Total respiratory losses are thus proportional to the amount of carbon120

stored at any time t. If we focus on the fate of inputs entering at t0, we can thus obtain the121

6
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amount of respiratory losses as122

R(t) = zᵀ ·M (t)

= −1ᵀ ·B · e(t−t0)B · u
(5)

This function represent how carbon that enters at a particular time t0 is lost from the system.123

This equation is virtually similar to the transit time distribution function derived by Metzler124

and Sierra (2018) and expressed as125

fT (τ) = −1ᵀ ·B · eτB · u

‖u‖
, (6)

Assuming that τ = t− t0, we can see that equations (5) and (6) are identical, with the only126

difference that fT (τ) is a density function that integrates to the value of one, while R(t) is127

a mass function that integrates to the total input mass ‖u‖. The symbol ‖ ‖ represents the128

sum of all elements inside the vector.129

We can see now that the transit time distribution can be interpreted as the time it takes130

for carbon entering the ecosystem as GPP to appear in the respiratory flux.131

Rasmussen et al. (2016) have previously shown that the mean transit time is composed132

by the contribution to respiration of ecosystem carbon pools with specific mean ages. It is133

therefore of interest to compute the age distribution for each individual pool and for the134

entire ecosystem. According to Metzler and Sierra (2018), the vector of density distributions135

of age for individual pools can be obtained as136

fa(τ) = (X∗)−1 · eτ B · u (7)

where X∗ = diag (x∗1, x
∗
2, . . . , x

∗
n) is the diagonal matrix with the steady-state vector of carbon137

stocks as components. The age distribution function for the entire system is given by138

fA(τ) = −1ᵀ ·B · eτB · x∗

‖x∗‖
. (8)

7
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These age distributions can help us to better understand how carbon of different ages139

contributes to the total respiratory flux in an ecosystem.140

3 Methods141

To obtain the transit time distribution of carbon for an old-growth tropical forest ecosys-142

tem, we implemented a model-data assimilation procedure that integrates a compartmental143

dynamical model with carbon stock and flux data from a tropical region in Colombia. We144

used carbon stock data collected at the Porce region of Colombia (6◦ 45’ 37 N, 75◦ 06’145

28” W, 800–1000 m elevation above sea level, 2078 mm mean annual precipitation, 21.3 ◦C146

mean annual temperature), where intensive studies have been conducted to obtain carbon147

accumulation over time along a sequence of secondary forests recovering from grazing and148

agricultural land use (Sierra et al., 2007a; Yepes et al., 2010; del Valle et al., 2011; Sierra149

et al., 2012). The landscape also contains elements of old-growth forests with no evidence of150

previous disturbance. Together, these observations were used in a data assimilation proce-151

dure to fit a linear compartmental system of the form of equation (1), using as carbon inputs152

satellite-derived estimes of GPP for the region as reported in Tramontana et al. (2016) and153

Ryu et al. (2011) (updated in Jiang and Ryu, 2016). In particular, we used the average154

± standard deviation of GPP for the period between 2001 and 2015 from Jiang and Ryu155

(2016) at 1 km and 8 day resolution, which gives a value of 22.89 ± 2.46 MgC ha−1 yr−1.156

Average GPP for the same period at 10 km and 8 day resolution from Tramontana et al.157

(2016) gives a value of 24.4 ± 1.02 MgC ha−1 yr−1. A combined estimate of GPP for the158

region with uncertainty propagation gives a value of 23.98 ± 2.36 MgC ha−1 yr−1 (see code159

in supplementary material).160

The model has seven pools, x1: foliage, x2: wood, x3: fine roots, x4: coarse roots, x5:161

fine litter, x6: coarse woody debris, and x7: soil carbon from 0 to 30 cm depth (Figure 1).162

In the model, all carbon fixed as GPP enters through the foliage compartment; i.e. u1 =163

8

Page 9 of 33 Ecology



For Review Only

GPP, and from there carbon is transferred to the x2, x3, and x4 pools according to transfer164

coefficients αi,j that represent the proportional transfers of material from pool j to pool i. We165

make the implicit assumption that photosynthetically fixed carbon stored as non-structural166

carbohydrates in the foliage can be mobilized and allocated to wood, fine and coarse roots.167

Transfers from the vegetation pools to the litter and soil pools were also represented using168

transfer coefficients αi,j. In particular, the dynamic model has the form169



ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

ẋ7



=



GPP

0

0

0

0

0

0



+



−k1 0 0 0 0 0 0

α2,1k1 −k2 0 0 0 0 0

α3,1k1 0 −k3 0 0 0 0

α4,1k1 0 0 −k4 0 0 0

α5,1k1 0 α5,3k3 0 −k5 0 0

0 α6,2k2 0 α6,4k4 0 −k6 0

0 0 0 0 α7,5k5 α7,6k6 −k7





x1

x2

x3

x4

x5

x6

x7



, (9)

where the cycling rates for each pool i are denoted as ki, and the transfer coefficients from170

a pool j to a pool i are denoted as αi,j.171

Measurements of aboveground tree biomass and palm biomass reported in Sierra et al.172

(2012) were aggregated and transformed to foliage biomass using a fraction of foliage of173

0.08 as reported in Zapata (2001). Measurements of biomass of herbaceous vegetation were174

added to this foliage biomass pool. To obtain values for the wood biomass pool, we used the175

aggregated values of tree and palm aboveground biomass multiplied by a fraction of wood176

biomass of 0.92, based on measurements reported by Zapata (2001).177

The data-assimilation procedure used random variates of GPP and carbon stocks in old-178

growth forests sampled from a normal distribution of mean values with their corresponding179

standard deviation. We used 1000 random variates for GPP and 33 random variates (equiv-180

alent to the original sample size) for the old-growth carbon stocks, which were used to find181

9
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1000 sets of parameter values for the model using the Levenberg-Marquardt optimization182

algorithm (Soetaert and Petzoldt, 2010).183

Using the average of the entire set of parameter values, we computed representative184

distributions of age and transit time using equations (7), (8), and (6). All computations were185

performed in R version 4.0, and code to reproduce all results is available as supplementary186

material at https://git.bgc-jena.mpg.de/csierra/agedisttropical.187

4 Results188

4.1 Model-data assimilation189

We obtained 1000 sets of parameter values of the dynamic model that provide the best fit190

between predictions and observations, taking into account the uncertainty and variability in191

GPP and steady-state carbon stocks. These parameter sets were used to compute uncertainty192

ranges for the predictions of the dynamic model, and to obtain one average parameter set193

considered as representative for the entire ensamble of parameters. Averages of the obtained194

parameter values, together with their uncertainty, are shown in Table 1195

Observations of carbon stocks along the successional sequence, together with average196

values of GPP and carbon stocks in old-growth forests, provided relatively good fit to a197

linear autonomous compartmental system with seven pools (Figure 2). The variability in198

model predictions was much lower for the wood and the coarse root biomass pools than for199

other ecosystem pools. Except for soil carbon, the model predicts rapid accumulation of200

carbon during succession consistent with previous analyses for this chronosequence (Sierra201

et al., 2007a; Yepes et al., 2010; del Valle et al., 2011; Sierra et al., 2012).202

The model predicts a steady-state carbon stock of 263.9 ± 2.0 MgC ha−1, which is within203

the upper range of the observations of total carbon stocks (with soil carbon up to 30 cm204

depth) of 252.4 ± 20.2 for the primary forests of the region (Sierra et al., 2007a).205

At equilibrium, total ecosystem respiration (Re) is predicted as 23.7 ± 2.5 MgC ha−1
206

10
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yr−1, from which 70 % corresponds to autotrophic respiration (Ra, 16.7 ± 3.1 MgC ha−1
207

yr−1) and 30 % to heterotrophic respiration (Rh, 7.0 ± 1.5 MgC ha−1 yr−1).208

4.2 Fate of gross primary production209

Using the set of average parameter values (Table 1), we obtained a representative function210

for the fate of carbon once it enters the ecosystem; i.e., the amount of remaining carbon211

after photosynthetic fixation computed using equation (3) (Figure 3). The model predicts212

that once carbon is fixed and incorporated in the foliage mass, it is lost within a third of a213

year (k1 = 2.978 yr−1), due to autotrophic respiration (55%) and to transfers to other pools214

(45%). In particular, about 25% of the losses from the foliage pool are transferred to the215

fine root pool (α5,1), and about 16% to the wood pool (α2,1) (Table 1); however, carbon is216

lost quickly from the fine litter pool while it stays for longer in the wood pool (Figure 3).217

Within a few years after fixation, carbon is transferred to the soil pool where it can218

remain for some decades. However, the model predicts that 100 years after photosynthetic219

fixation, most of the carbon is lost and very small proportions remain in situ.220

4.3 Age and transit time distributions221

We obtained probability distributions for the age of carbon in individual pools and for the222

entire ecosystem using equations (7) and (8), respectively (Figure 4). These distributions223

show that carbon in foliage and fine litter is mostly young (mean ages of 0.34 ± 0.01 and224

2.14 ± 0.56 yr, respectively), while other pools contain carbon with a wide mix of ages.225

Despite different biomass values among them, the wood, fine- and coarse-root biomass pools226

have relatively similar age distributions (Figure 4), with mean age values of 29.15 ± 0.16,227

38.12 ± 3.28, and 45.36 ± 0.30 yr, respectively. Although the coarse woody debris pool has228

a very similar mean age (32.95 ± 1.24 yr), the shape of the distribution is very different229

than the distribution of other pools, with an age delay of a few years due to the time carbon230

spends in wood and coarse roots before entering this pool. The pool with the oldest mean231

11
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age was the soil carbon pool, with a mean value of 61.85 ± 8.73 yr, and a relatively long tail232

indicating that some carbon can stay for relatively long times in the soil.233

The mean age for the entire ecosystem was predicted by the model as 43.15 ± 3.33 yr,234

but clearly there is carbon that can be much older than this mean value. The model predicts235

that 95% of the carbon stored in the ecosystem is younger than 134.9 ± 10.0 yr (95% quantile236

of the system age distribution).237

We also obtained the transit time distribution of carbon for these forests at equilibrium238

(Figure 5a). The obtained distribution shows that 50% of the carbon that is fixed at any239

given year is lost in less than 0.50 ± 0.14 yr (median transit time), while 95% of the carbon240

is lost in less than 68.60 ± 5.53 yr. The mean transit time for the system, which can also be241

obtained dividing carbon stocks at equilibrium by GPP, was 11.24 ± 1.20 yr. The difference242

between the mean and the median transit time is large, which indicates that estimates of243

ecosystem transit times based on the stock-over-flux approach do not provide a good overview244

of the fast dynamics of carbon losses that occur early after carbon fixation by photosynthesis.245

Most of the carbon that passes quickly through the ecosystem and contributes to the fast246

transit time is contributed by the foliage and fine litter pools (Figure 5a). Carbon with long247

transit times is contributed mostly by the soil carbon, coarse roots, and wood biomass pools.248

5 Discussion249

Our results indicate that carbon fixed during photosynthesis in a tropical forest returns250

back to the atmosphere at a wide range of timescales, a property that is captured by the251

transit time distribution. We found that in old-grwoth tropical forests of the Porce region252

in Colombia, most of the fixed carbon is respired very quickly, with 50% of total GPP253

returning back to the atmosphere in half of a year after fixation. Smaller proportions of the254

annually fixed carbon are transferred to other ecosystem pools, and they are also gradually255

lost from the system. Quantiles of the transit time distribution show that 95% of the annual256

12
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photosynthesis is lost in less than 69 years, and very small proportions may remain in wood,257

coarse roots or soil carbon for longer times.258

The concept of transit time distribution as presented here, helps to reconcile different259

types of studies on the timescales at which carbon is cycled in tropical forests. Previous260

studies with healthy tropical trees using radiocarbon techniques have shown that respired261

carbon is generally a few years old (Muhr et al., 2013, 2018), while mean residence time262

estimates based on the aboveground biomass of inventory plots are around 50 years or higher263

(Galbraith et al., 2013; Malhi et al., 2013, 2015). However, these different estimates can be264

better explained in the context of an underlying distribution of transit (residence) times that265

can capture the fast dynamics of respiratory processes as well as the slow dynamics due to266

carbon transfers among compartments (e.g. from live biomass to coarse woody debris after267

tree mortality) and stabilization in slow cycling pools such as soil carbon.268

For the old-growth tropical forests of the Porce region, we estimated a mean transit time269

of carbon of 11 yr, but the underlying transit time distribution showed, at one extreme, fast270

carbon losses within the first year after fixation, and at the other extreme, small amounts271

being respired only after several decades. Therefore, the transit time distribution has a272

shape with a strong initial decline, suggesting that most metabolic processes responsible for273

sustaining biomass stocks operate at short (intra-annual) timescales. These processes are274

not well captured by mean transit (residence) time estimates such as those obtained from275

inventory plots, or dividing total carbon stocks by GPP.276

The model-data assimilation approach introduced here allowed us to estimate important277

ecosystem-level metrics that are very difficult to obtain from measurements alone such as278

Ra and Rh (Chambers et al., 2004). In particular, we obtained an estimate of NPP of 7.0 ±279

1.5 MgC ha−1 yr−1 by subtracting Ra from GPP. Commonly, NPP is quantified in tropical280

forests by measuring litter production and changes in biomass from inventory plots, but this281

type of estimates can largely deviate from NPP as defined by the difference between GPP and282

Ra (Clark et al., 2001). Due to this deviation, plot-based estimates are often called NPP∗
283

13
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to differentiate them from the flux-based definition of NPP (Clark et al., 2001). Indeed, the284

inventory based estimate of NPP∗ for old-growth forests of the Porce region was reported as285

12.76 ± 1.36 MgC ha−1 yr−1 in Sierra et al. (2007b). This large difference between NPP and286

NPP∗ can be due to overestimations of the inventory-based methods such as the accounting287

of ingrowth of new trees to inventory plots; or due to overestimations of GPP from the288

satellite-based products, which can lead to large estimates of autotrophic respiration in the289

data-assimilation procedure. Independent of the reason for the disagreement, our results290

confirm the assertion by Clark et al. (2001) that these two type of approaches can give291

largely different estimates of net primary production.292

The ratio NPP:GPP, often called carbon use efficiency (CUE) (Gifford, 2003; Chambers293

et al., 2004; DeLucia et al., 2007; Malhi et al., 2015), gives a value of 0.3 for these tropical294

forests. According to common interpretation, this ratio suggests that 30% of the photosyn-295

thetically fixed carbon is used for biomass production. Similar values for CUE with similar296

interpretations are also given by Chambers et al. (2004) and Malhi et al. (2013). However, we297

believe that this interpretation of CUE has problems since, as our transit time distribution298

showed, autotrophic respiration is composed of carbon that spends some time in biomass299

before being respired. The amount of time carbon stays in plant cells can vary from hours300

to decades, but photosynthates have to be metabolized from living cells for CO2 production301

to occur. Thus, autotrophic respiration originates from biomass already produced; however,302

most of this metabolism occurs very quickly as the transit time distribution suggests, giving303

the false impression that a large proportion of carbon was not used to produce biomass. As304

other authors have shown (Gifford, 2003; DeLucia et al., 2007), estimates of CUE depend305

largely on whether estimates are made on short or long periods of time, and the transit time306

distribution provides good support for avoiding an interpretation of this ratio out of the307

context of the timescales involved.308

We prefer to interpret the ratio NPP:GPP as the proportion of total photosynthesized309

carbon metabolized and respired by heterotrophs, and not by autotrophs. This interpretation310
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emerges by the simple relations311

NPP

GPP
=

GPP−Ra
GPP

= 1− Ra

GPP
,

=
Ra+Rh−Ra

GPP
=

Rh

GPP
,

(10)

assuming that at equilibrium GPP and ecosystem respiration are equal, so GPP = Ra+Rh.312

For the old-growth forests of the Porce region, we can thus infer that 30% of total313

photosynthate is respired by heterotrophic organisms, and 70% by autotrophic organisms.314

This interpretation has little to do with an efficiency concept for biomass production, but315

rather on the partitioning of pathways that lead to oxidation of carbon-based molecules and316

return of carbon to the atmosphere as CO2. According to this interpretation, only 30% of317

GPP follows a path through the network of compartments from where it can be respired318

by heterotrophs. A large proportion of the photosynthetically fixed carbon (70%), follows319

short paths through this compartmental network, with autotrophs responsible for its return320

as CO2.321

A major source of uncertainty for these predictions of respiration, NPP and their ratios,322

arises from the choice of model structure for the data-assimilation procedure. We chose323

here a parsimonious model structure with constant first-order rates of carbon cycling and324

transfers among compartments. A different model structure may predict different shapes325

of the transit time distribution and the respiratory fluxes that compose it. Independent326

datasets may help to better identify appropriate model structures; for instance, radiocarbon327

measurements in carbon pools and in respired CO2 would provide independent measurements328

to confirm the predictions of the age distributions presented in Figure (4) (Trumbore and329

Barbosa De Camargo, 2013). Additional details about confrontation of model predictions330

with radiocarbon data can be found in Appendix A.331

Despite model-related uncertainties, we believe the approach introduced here provides332

an alternative view of ecosystem carbon cycling that can help to interpret existing ap-333

proaches and paradigms currently used to study the carbon cycle in tropical forests (e.g.334
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Malhi et al., 2015). Data-assimilation is a useful approach to incorporate existing observa-335

tions into ecosystem models, and obtain metrics that cannot be obtained by measurements336

alone. If applied to the existing networks of tropical forest plots, combined with satellite-337

and eddy-covariance-based measurements of primary production, data assimilation tech-338

niques can provide a better understanding of mechanisms and emergent properties of the339

carbon cycle in the tropics. The transit time distribution is a very powerful metric that340

integrates multiple processes of ecosystem carbon cycling across multiple temporal scales.341

Estimates of this distribution across tropical forests can thus help us to determine the fate342

of the large masses of carbon that are annually drawn down from the atmosphere into the343

tropics, and potential consequences of global change on the carbon cycle such as the CO2344

fertilization effect.345

It has been hypothesized that as CO2 concentrations increase in the atmosphere, primary346

production in tropical forest may increase (Phillips et al., 1998; Lewis, 2006; Grace et al.,347

2014; Hubau et al., 2020). If this were the case, the transit time distribution can help us348

to predict for how long the extra carbon would stay in an ecosystem. Depending on how349

long the extra carbon stays, forests can contribute to mitigate climate change at policy350

relevant timescales (Körner, 2017). Based on the transit time distribution we obtained, we351

would expect that any increase in GPP would lead to rapid losses within one year, and352

extremely small proportions of extra carbon would stay for years or decades. Our results353

and interpretation are consistent with results from Jiang et al. (2020), who found that most354

extra-carbon in a CO2 fertilization experiment at a temperature forest was lost rapidly355

as respiration. This is indeed expected in the context of the shape of the transit time356

distribution, and if applicable to other old-growth forests worldwide, we would expect that357

extra carbon from CO2 fertilization would be lost quickly, and would not remain stored at358

timescales relevant for climate change mitigation.359
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6 Conclusions360

We provide here the first estimation of the fate of carbon after photosynthesis, and of the361

transit time distribution of carbon for a tropical forest ecosystem, using a combination of362

model-data assimilation methods and the theory of timescales for compartmental dynamical363

systems. We estimate that for old-growth forests of the Porce region of Colombia, the annual364

photosynthetic carbon flux returns back to the atmosphere at a wide range of timescales;365

50% of this carbon is respired in less than 0.5 yr and 95% is respired in less than 69 yr, with366

a mean transit time of 11 yr. From the annual GPP flux, about 70% of the carbon follows a367

pathway across the network of ecosystem carbon compartments that leads to respiration by368

autotrophs, while 30% follows a pathway that leads to respiration by heterotrophs.369

In comparison with traditional methods that estimate mean residence times in biomass,370

we offer here a new perspective to integrate multiple ecosystem processes using the age of371

respired carbon, i.e. the transit time distribution, as a unifying concept. This approach372

also provides a new perspective for interpreting the ratio NPP:GPP, not as an efficiency of373

biomass production, but as the proportion of photosynthetic products that are not respired374

by autotrophs.375

In the context of global change and increases in atmospheric CO2 concentrations, the376

transit time distribution may offer useful insights on whether additional photosynthates377

produced by increases in GPP will remain stored in ecosystems at timescales relevant for378

mitigating climate change.379
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Appendix A: Radiocarbon as a tool for model testing388

Measurements of radiocarbon in ecosystem carbon pools can be used to test the adequacy389

of model predictions. In particular, the pool age distributions predicted by the model and390

presented in Figure (4), can be compared with radiocarbon measurements as an independent391

variable for model confirmation. For this purpose, Chanca et al. (in preparation) developed392

an algorithm to obtain distributions of radiocarbon in ecosystem pools to obtain the expected393

variability in radiocarbon values as predicted by the model (Figure A). Because of the radio-394

carbon ‘bomb spike’ effect of the 20th century, radiocarbon values change significantly from395

year to year, and their incorporation in biomass pools is time dependent.396

For example, for the year 2010, we predict that for pools with fast cycling rates and397

narrow age distributions such as the foliage and fine litter pools, radiocarbon values are well398

constraint within a narrow range. For slow cycling pools such as soil carbon and coarse woody399

debris, the range in radiocarbon values is much wider (Figure A). For these slow cycling pools,400

the number of samples required to characterize well the variability in radiocarbon would be401

much higher.402

Empirical measurements of radiocarbon in ecosystem pools can be used to build fre-403

quency distributions that can then be inverted to obtain approximations of age distributions.404

Through this method, it is possible to independently test our model predictions.405
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Haverd, V., Köhler, P., Ichii, K., Jain, A. K., Liu, J., Lombardozzi, D., Nabel, J. E.494

M. S., Nelson, J. A., O’Sullivan, M., Pallandt, M., Papale, D., Peters, W., Pongratz,495
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26

Page 27 of 33 Ecology



For Review Only
Foliage

Coarse roots

Soil Carbon

GPP

Fine litterCoarse woody
      debris 

 Fine roots 

Atmosphere

Wood

Figure 1: Structure of the compartmental model used to fit the available data from the Porce
region of Colombia. Arrows represent transfers of carbon among pools (continuous line) or
respiratory losses (dashed lines) to the atmosphere. Autotrophic respiration fluxes in dark
blue and heterotrophic respiration fluxes in dark red.
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Figure 2: Observations of carbon stocks along a successional sequence and range of model
predictions by fitting the model of equation (9) using observed data and random variates of
GPP and old-growth carbon stocks after year 100.
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Figure 3: Fate of the annual amount of carbon fixed by photosynthesis (mean GPP = 23.98
Mg C ha−1) for the forest at equilibrium as predicted by the mean values of the parameters.
Carbon enters the ecosystem through the foliage compartment and it is transferred to other
compartments where it spends certain amount of time before being released back to the
atmosphere. After 100 years, most carbon is lost from all pools.
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Figure 4: Age density distributions for each pool and for the entire ecosystem at equilibrium.
These densities were obtained using the average parameter values from the 1000 sets of
parameters after the optimization procedure. Age densities integrate to a value of 1, therefore
their units are in yr−1. Axes for each panel are different to facilitate the display of each
distribution.
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Figure 5: Transit time mass distribution and contribution of different pools to the transit
time. Pool-wise mass distributions of transit times in (b) are presented on a different scale
so differences among pools can be better observed. Dotted vertical line in panel a represent
the median transit time (50% quantile) of the distribution, equivalent to 0.5 yr. Units in
vertical axis represent a rate at which carbon fixed at a certain time is respired. The integral
over the entire transit time distribution is equal to total ecosystem respiration.
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Figure A: Expected distributions of radiocarbon for each of the pools obtained by taking
pool age distributions and predicting the corresponding radiocarbon values from atmospheric
14CO2. These radiocarbon distributions are time-dependent, and therefore we present here
only the predictions corresponding to calendar year 2010.
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Table 1: Mean and standard deviation (SD) of parameter values obtained from the 1000
iterations of the optimization procedure.

Parameter Mean SD

k1 2.978 0.041
k2 0.035 0.000
k3 0.027 0.011
k4 0.022 0.000
k5 2.594 0.520
k6 0.519 0.789
k7 0.024 0.015
α2,1 0.158 0.017
α3,1 0.009 0.003
α4,1 0.031 0.003
α5,1 0.251 0.061
α5,3 0.997 0.005
α6,2 0.249 0.172
α6,4 0.001 0.000
α7,5 0.256 0.144
α7,6 0.988 0.045

33

Page 34 of 33Ecology


